At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's tackle the problem step by step, making calculations directly.
### Part (a): Probability of Drawing an Ace and a King
First, we need to consider the cases separately:
1. Drawing an Ace first and then a King:
- Probability of drawing an Ace first:
There are 4 Aces in a deck of 52 cards.
[tex]\[ \text{Probability of drawing an Ace first} = \frac{4}{52} \][/tex]
- After drawing an Ace, there are 51 cards left, with 4 of them being Kings.
[tex]\[ \text{Probability of drawing a King second} = \frac{4}{51} \][/tex]
- Therefore, the combined probability of drawing an Ace first and a King second is:
[tex]\[ \left(\frac{4}{52}\right) \times \left(\frac{4}{51}\right) = \frac{4}{52} \times \frac{4}{51} \approx 0.006033182503770739 \][/tex]
2. Drawing a King first and then an Ace:
- Probability of drawing a King first:
There are 4 Kings in a deck of 52 cards.
[tex]\[ \text{Probability of drawing a King first} = \frac{4}{52} \][/tex]
- After drawing a King, there are 51 cards left, with 4 of them being Aces.
[tex]\[ \text{Probability of drawing an Ace second} = \frac{4}{51} \][/tex]
- Therefore, the combined probability of drawing a King first and an Ace second is:
[tex]\[ \left(\frac{4}{52}\right) \times \left(\frac{4}{51}\right) = \frac{4}{52} \times \frac{4}{51} \approx 0.006033182503770739 \][/tex]
To find the total probability of drawing one Ace and one King (in any order):
[tex]\[ \text{Total Probability} = \text{Probability of Ace first, King second} + \text{Probability of King first, Ace second} = 0.006033182503770739 + 0.006033182503770739 = 0.012066365007541479 \][/tex]
### Part (b): Probability of Drawing Two Aces
- Probability of drawing an Ace first:
There are 4 Aces in a deck of 52 cards.
[tex]\[ \text{Probability of drawing an Ace first} = \frac{4}{52} \][/tex]
- After drawing the first Ace, there are 3 Aces left in a deck of 51 cards.
[tex]\[ \text{Probability of drawing a second Ace} = \frac{3}{51} \][/tex]
- Therefore, the combined probability of drawing two Aces is:
[tex]\[ \left(\frac{4}{52}\right) \times \left(\frac{3}{51}\right) = \frac{4}{52} \times \frac{3}{51} \approx 0.004524886877828055 \][/tex]
### Summary:
(a) Probability of getting an Ace and a King: [tex]\(\approx 0.012066365007541479\)[/tex]
(b) Probability of getting two Aces: [tex]\(\approx 0.004524886877828055\)[/tex]
Thus, the probabilities have been calculated successfully.
### Part (a): Probability of Drawing an Ace and a King
First, we need to consider the cases separately:
1. Drawing an Ace first and then a King:
- Probability of drawing an Ace first:
There are 4 Aces in a deck of 52 cards.
[tex]\[ \text{Probability of drawing an Ace first} = \frac{4}{52} \][/tex]
- After drawing an Ace, there are 51 cards left, with 4 of them being Kings.
[tex]\[ \text{Probability of drawing a King second} = \frac{4}{51} \][/tex]
- Therefore, the combined probability of drawing an Ace first and a King second is:
[tex]\[ \left(\frac{4}{52}\right) \times \left(\frac{4}{51}\right) = \frac{4}{52} \times \frac{4}{51} \approx 0.006033182503770739 \][/tex]
2. Drawing a King first and then an Ace:
- Probability of drawing a King first:
There are 4 Kings in a deck of 52 cards.
[tex]\[ \text{Probability of drawing a King first} = \frac{4}{52} \][/tex]
- After drawing a King, there are 51 cards left, with 4 of them being Aces.
[tex]\[ \text{Probability of drawing an Ace second} = \frac{4}{51} \][/tex]
- Therefore, the combined probability of drawing a King first and an Ace second is:
[tex]\[ \left(\frac{4}{52}\right) \times \left(\frac{4}{51}\right) = \frac{4}{52} \times \frac{4}{51} \approx 0.006033182503770739 \][/tex]
To find the total probability of drawing one Ace and one King (in any order):
[tex]\[ \text{Total Probability} = \text{Probability of Ace first, King second} + \text{Probability of King first, Ace second} = 0.006033182503770739 + 0.006033182503770739 = 0.012066365007541479 \][/tex]
### Part (b): Probability of Drawing Two Aces
- Probability of drawing an Ace first:
There are 4 Aces in a deck of 52 cards.
[tex]\[ \text{Probability of drawing an Ace first} = \frac{4}{52} \][/tex]
- After drawing the first Ace, there are 3 Aces left in a deck of 51 cards.
[tex]\[ \text{Probability of drawing a second Ace} = \frac{3}{51} \][/tex]
- Therefore, the combined probability of drawing two Aces is:
[tex]\[ \left(\frac{4}{52}\right) \times \left(\frac{3}{51}\right) = \frac{4}{52} \times \frac{3}{51} \approx 0.004524886877828055 \][/tex]
### Summary:
(a) Probability of getting an Ace and a King: [tex]\(\approx 0.012066365007541479\)[/tex]
(b) Probability of getting two Aces: [tex]\(\approx 0.004524886877828055\)[/tex]
Thus, the probabilities have been calculated successfully.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.