At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To create a cubic model [tex]\( y \)[/tex] representing the number of women in the workforce based on years past January 1st, 1950, we will use the given data from the table. The model takes the form:
[tex]\[ y = Ax^3 + Bx^2 + Cx + D \][/tex]
where:
- [tex]\( x \)[/tex] is the number of years past 1950,
- [tex]\( y \)[/tex] is the number of women in the workforce (in millions),
- [tex]\( A, B, C, D \)[/tex] are coefficients to be determined.
Using the data provided, the years and corresponding workforce numbers can be listed as follows:
- 1950: [tex]\( x = 0, \, y = 18.9 \)[/tex]
- 1960: [tex]\( x = 10, \, y = 22.7 \)[/tex]
- 1970: [tex]\( x = 20, \, y = 31.5 \)[/tex]
- 1980: [tex]\( x = 30, \, y = 45.2 \)[/tex]
- 1990: [tex]\( x = 40, \, y = 55.6 \)[/tex]
- 2000: [tex]\( x = 50, \, y = 64.8 \)[/tex]
- 2010: [tex]\( x = 60, \, y = 75.7 \)[/tex]
- 2015: [tex]\( x = 65, \, y = 77.9 \)[/tex]
- 2020: [tex]\( x = 70, \, y = 78.9 \)[/tex]
- 2030: [tex]\( x = 80, \, y = 80.8 \)[/tex]
- 2040: [tex]\( x = 90, \, y = 85.1 \)[/tex]
- 2050: [tex]\( x = 100, \, y = 92.3 \)[/tex]
Using these data points, we fit a cubic polynomial to determine the coefficients [tex]\( A, B, C, \)[/tex] and [tex]\( D \)[/tex]. The fitted cubic model is:
[tex]\[ y = -7.0 \times 10^{-5} x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
Thus, the cubic model [tex]\( y \)[/tex] can be written as:
[tex]\[ y = -0.00007 x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
So, in the correct format:
[tex]\[ y = -0.00007 x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
[tex]\[ y = Ax^3 + Bx^2 + Cx + D \][/tex]
where:
- [tex]\( x \)[/tex] is the number of years past 1950,
- [tex]\( y \)[/tex] is the number of women in the workforce (in millions),
- [tex]\( A, B, C, D \)[/tex] are coefficients to be determined.
Using the data provided, the years and corresponding workforce numbers can be listed as follows:
- 1950: [tex]\( x = 0, \, y = 18.9 \)[/tex]
- 1960: [tex]\( x = 10, \, y = 22.7 \)[/tex]
- 1970: [tex]\( x = 20, \, y = 31.5 \)[/tex]
- 1980: [tex]\( x = 30, \, y = 45.2 \)[/tex]
- 1990: [tex]\( x = 40, \, y = 55.6 \)[/tex]
- 2000: [tex]\( x = 50, \, y = 64.8 \)[/tex]
- 2010: [tex]\( x = 60, \, y = 75.7 \)[/tex]
- 2015: [tex]\( x = 65, \, y = 77.9 \)[/tex]
- 2020: [tex]\( x = 70, \, y = 78.9 \)[/tex]
- 2030: [tex]\( x = 80, \, y = 80.8 \)[/tex]
- 2040: [tex]\( x = 90, \, y = 85.1 \)[/tex]
- 2050: [tex]\( x = 100, \, y = 92.3 \)[/tex]
Using these data points, we fit a cubic polynomial to determine the coefficients [tex]\( A, B, C, \)[/tex] and [tex]\( D \)[/tex]. The fitted cubic model is:
[tex]\[ y = -7.0 \times 10^{-5} x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
Thus, the cubic model [tex]\( y \)[/tex] can be written as:
[tex]\[ y = -0.00007 x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
So, in the correct format:
[tex]\[ y = -0.00007 x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.