At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To create a cubic model [tex]\( y \)[/tex] representing the number of women in the workforce based on years past January 1st, 1950, we will use the given data from the table. The model takes the form:
[tex]\[ y = Ax^3 + Bx^2 + Cx + D \][/tex]
where:
- [tex]\( x \)[/tex] is the number of years past 1950,
- [tex]\( y \)[/tex] is the number of women in the workforce (in millions),
- [tex]\( A, B, C, D \)[/tex] are coefficients to be determined.
Using the data provided, the years and corresponding workforce numbers can be listed as follows:
- 1950: [tex]\( x = 0, \, y = 18.9 \)[/tex]
- 1960: [tex]\( x = 10, \, y = 22.7 \)[/tex]
- 1970: [tex]\( x = 20, \, y = 31.5 \)[/tex]
- 1980: [tex]\( x = 30, \, y = 45.2 \)[/tex]
- 1990: [tex]\( x = 40, \, y = 55.6 \)[/tex]
- 2000: [tex]\( x = 50, \, y = 64.8 \)[/tex]
- 2010: [tex]\( x = 60, \, y = 75.7 \)[/tex]
- 2015: [tex]\( x = 65, \, y = 77.9 \)[/tex]
- 2020: [tex]\( x = 70, \, y = 78.9 \)[/tex]
- 2030: [tex]\( x = 80, \, y = 80.8 \)[/tex]
- 2040: [tex]\( x = 90, \, y = 85.1 \)[/tex]
- 2050: [tex]\( x = 100, \, y = 92.3 \)[/tex]
Using these data points, we fit a cubic polynomial to determine the coefficients [tex]\( A, B, C, \)[/tex] and [tex]\( D \)[/tex]. The fitted cubic model is:
[tex]\[ y = -7.0 \times 10^{-5} x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
Thus, the cubic model [tex]\( y \)[/tex] can be written as:
[tex]\[ y = -0.00007 x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
So, in the correct format:
[tex]\[ y = -0.00007 x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
[tex]\[ y = Ax^3 + Bx^2 + Cx + D \][/tex]
where:
- [tex]\( x \)[/tex] is the number of years past 1950,
- [tex]\( y \)[/tex] is the number of women in the workforce (in millions),
- [tex]\( A, B, C, D \)[/tex] are coefficients to be determined.
Using the data provided, the years and corresponding workforce numbers can be listed as follows:
- 1950: [tex]\( x = 0, \, y = 18.9 \)[/tex]
- 1960: [tex]\( x = 10, \, y = 22.7 \)[/tex]
- 1970: [tex]\( x = 20, \, y = 31.5 \)[/tex]
- 1980: [tex]\( x = 30, \, y = 45.2 \)[/tex]
- 1990: [tex]\( x = 40, \, y = 55.6 \)[/tex]
- 2000: [tex]\( x = 50, \, y = 64.8 \)[/tex]
- 2010: [tex]\( x = 60, \, y = 75.7 \)[/tex]
- 2015: [tex]\( x = 65, \, y = 77.9 \)[/tex]
- 2020: [tex]\( x = 70, \, y = 78.9 \)[/tex]
- 2030: [tex]\( x = 80, \, y = 80.8 \)[/tex]
- 2040: [tex]\( x = 90, \, y = 85.1 \)[/tex]
- 2050: [tex]\( x = 100, \, y = 92.3 \)[/tex]
Using these data points, we fit a cubic polynomial to determine the coefficients [tex]\( A, B, C, \)[/tex] and [tex]\( D \)[/tex]. The fitted cubic model is:
[tex]\[ y = -7.0 \times 10^{-5} x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
Thus, the cubic model [tex]\( y \)[/tex] can be written as:
[tex]\[ y = -0.00007 x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
So, in the correct format:
[tex]\[ y = -0.00007 x^3 + 0.00565 x^2 + 0.83946 x + 16.23384 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.