Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's find the volume of a pipe with a diameter of 50 mm and a length of 0.9 m, using the value of π as 3.142.
### Step 1: Convert the Diameter to Meters
The given diameter of the pipe is 50 mm. To convert this into meters, we use the conversion factor:
1 meter = 1000 millimeters.
So,
[tex]\[ \text{diameter in meters} = \frac{50 \, \text{mm}}{1000} = 0.05 \, \text{m} \][/tex]
### Step 2: Find the Radius of the Pipe
The radius is half of the diameter. Therefore,
[tex]\[ \text{radius} = \frac{\text{diameter}}{2} = \frac{0.05 \, \text{m}}{2} = 0.025 \, \text{m} \][/tex]
### Step 3: Calculate the Cross-Sectional Area
The cross-sectional area [tex]\(A\)[/tex] of the pipe (which is a circle) is given by the formula:
[tex]\[ A = \pi \times (\text{radius})^2 \][/tex]
Substituting the values, we get:
[tex]\[ A = 3.142 \times (0.025 \, \text{m})^2 \][/tex]
[tex]\[ A = 3.142 \times 0.000625 \, \text{m}^2 \][/tex]
[tex]\[ A = 0.00196375 \, \text{m}^2 \][/tex]
### Step 4: Calculate the Volume of the Pipe
The volume [tex]\(V\)[/tex] of the pipe is given by the formula:
[tex]\[ V = \text{cross-sectional area} \times \text{length} \][/tex]
So,
[tex]\[ V = 0.00196375 \, \text{m}^2 \times 0.9 \, \text{m} \][/tex]
[tex]\[ V = 0.001767375 \, \text{m}^3 \][/tex]
Therefore, the volume of the pipe is [tex]\(0.001767375 \, \text{m}^3\)[/tex].
### Step 1: Convert the Diameter to Meters
The given diameter of the pipe is 50 mm. To convert this into meters, we use the conversion factor:
1 meter = 1000 millimeters.
So,
[tex]\[ \text{diameter in meters} = \frac{50 \, \text{mm}}{1000} = 0.05 \, \text{m} \][/tex]
### Step 2: Find the Radius of the Pipe
The radius is half of the diameter. Therefore,
[tex]\[ \text{radius} = \frac{\text{diameter}}{2} = \frac{0.05 \, \text{m}}{2} = 0.025 \, \text{m} \][/tex]
### Step 3: Calculate the Cross-Sectional Area
The cross-sectional area [tex]\(A\)[/tex] of the pipe (which is a circle) is given by the formula:
[tex]\[ A = \pi \times (\text{radius})^2 \][/tex]
Substituting the values, we get:
[tex]\[ A = 3.142 \times (0.025 \, \text{m})^2 \][/tex]
[tex]\[ A = 3.142 \times 0.000625 \, \text{m}^2 \][/tex]
[tex]\[ A = 0.00196375 \, \text{m}^2 \][/tex]
### Step 4: Calculate the Volume of the Pipe
The volume [tex]\(V\)[/tex] of the pipe is given by the formula:
[tex]\[ V = \text{cross-sectional area} \times \text{length} \][/tex]
So,
[tex]\[ V = 0.00196375 \, \text{m}^2 \times 0.9 \, \text{m} \][/tex]
[tex]\[ V = 0.001767375 \, \text{m}^3 \][/tex]
Therefore, the volume of the pipe is [tex]\(0.001767375 \, \text{m}^3\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.