Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's determine the percent yield of the reaction step-by-step. The reaction given is:
[tex]\[ \text{Fe}_2\text{O}_3(s) + 2 \text{Al}(s) \rightarrow \text{Al}_2\text{O}_3(s) + 2 \text{Fe}(s) \][/tex]
We are given:
- Actual yield of Fe: [tex]\( 28.65 \, \text{g} \)[/tex]
- Initial mass of Fe₂O₃: [tex]\( 50.00 \, \text{g} \)[/tex]
- Molar mass of Fe₂O₃: [tex]\( 159.7 \, \text{g/mol} \)[/tex]
- Molar mass of Fe: [tex]\( 55.85 \, \text{g/mol} \)[/tex]
### Step 1: Calculate the moles of Fe₂O₃
To find the moles of Fe₂O₃, use its initial mass and molar mass:
[tex]\[ \text{Moles of Fe}_2\text{O}_3 = \frac{\text{Mass of Fe}_2\text{O}_3}{\text{Molar mass of Fe}_2\text{O}_3} = \frac{50.00 \, \text{g}}{159.7 \, \text{g/mol}} = 0.313087 \, \text{mol} \][/tex]
### Step 2: Determine the moles of Fe produced
From the stoichiometry of the reaction, 1 mole of Fe₂O₃ produces 2 moles of Fe. Using the moles of Fe₂O₃ calculated:
[tex]\[ \text{Moles of Fe} = \text{Moles of Fe}_2\text{O}_3 \times 2 = 0.313087 \, \text{mol} \times 2 = 0.626174 \, \text{mol} \][/tex]
### Step 3: Calculate the theoretical yield of Fe
The theoretical yield is found by converting the moles of Fe to grams using its molar mass:
[tex]\[ \text{Theoretical yield of Fe} = \text{Moles of Fe} \times \text{Molar mass of Fe} = 0.626174 \, \text{mol} \times 55.85 \, \text{g/mol} = 34.971822 \, \text{g} \][/tex]
### Step 4: Calculate the percent yield
Finally, we determine the percent yield using the actual yield and theoretical yield:
[tex]\[ \text{Percent yield} = \left( \frac{\text{Actual yield}}{\text{Theoretical yield}} \right) \times 100 = \left( \frac{28.65 \, \text{g}}{34.971822 \, \text{g}} \right) \times 100 = 81.923 \% \][/tex]
Thus, the percent yield of the reaction is approximately [tex]\( 81.923 \% \)[/tex].
[tex]\[ \text{Fe}_2\text{O}_3(s) + 2 \text{Al}(s) \rightarrow \text{Al}_2\text{O}_3(s) + 2 \text{Fe}(s) \][/tex]
We are given:
- Actual yield of Fe: [tex]\( 28.65 \, \text{g} \)[/tex]
- Initial mass of Fe₂O₃: [tex]\( 50.00 \, \text{g} \)[/tex]
- Molar mass of Fe₂O₃: [tex]\( 159.7 \, \text{g/mol} \)[/tex]
- Molar mass of Fe: [tex]\( 55.85 \, \text{g/mol} \)[/tex]
### Step 1: Calculate the moles of Fe₂O₃
To find the moles of Fe₂O₃, use its initial mass and molar mass:
[tex]\[ \text{Moles of Fe}_2\text{O}_3 = \frac{\text{Mass of Fe}_2\text{O}_3}{\text{Molar mass of Fe}_2\text{O}_3} = \frac{50.00 \, \text{g}}{159.7 \, \text{g/mol}} = 0.313087 \, \text{mol} \][/tex]
### Step 2: Determine the moles of Fe produced
From the stoichiometry of the reaction, 1 mole of Fe₂O₃ produces 2 moles of Fe. Using the moles of Fe₂O₃ calculated:
[tex]\[ \text{Moles of Fe} = \text{Moles of Fe}_2\text{O}_3 \times 2 = 0.313087 \, \text{mol} \times 2 = 0.626174 \, \text{mol} \][/tex]
### Step 3: Calculate the theoretical yield of Fe
The theoretical yield is found by converting the moles of Fe to grams using its molar mass:
[tex]\[ \text{Theoretical yield of Fe} = \text{Moles of Fe} \times \text{Molar mass of Fe} = 0.626174 \, \text{mol} \times 55.85 \, \text{g/mol} = 34.971822 \, \text{g} \][/tex]
### Step 4: Calculate the percent yield
Finally, we determine the percent yield using the actual yield and theoretical yield:
[tex]\[ \text{Percent yield} = \left( \frac{\text{Actual yield}}{\text{Theoretical yield}} \right) \times 100 = \left( \frac{28.65 \, \text{g}}{34.971822 \, \text{g}} \right) \times 100 = 81.923 \% \][/tex]
Thus, the percent yield of the reaction is approximately [tex]\( 81.923 \% \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.