Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the equation of the line perpendicular to the given line [tex]\( 3x + 5y = -9 \)[/tex] that passes through the point [tex]\((3, 0)\)[/tex], follow these steps:
1. Find the slope of the given line [tex]\(3x + 5y = -9\)[/tex]:
- Start with the standard form [tex]\(Ax + By = C\)[/tex]. The slope of a line [tex]\(Ax + By = C\)[/tex] is given by [tex]\(-A/B\)[/tex].
- For the given line [tex]\(3x + 5y = -9\)[/tex], [tex]\(A = 3\)[/tex] and [tex]\(B = 5\)[/tex].
- Thus, the slope [tex]\(m\)[/tex] of the line is [tex]\(-\frac{3}{5}\)[/tex].
2. Determine the slope of the line perpendicular to the given line:
- The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\(-\frac{3}{5}\)[/tex] is [tex]\(\frac{5}{3}\)[/tex].
3. Use point-slope form to find the equation of the perpendicular line:
- Point-slope form is given by [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the given point.
- Substituting [tex]\(m = \frac{5}{3}\)[/tex] and [tex]\((x_1, y_1) = (3, 0)\)[/tex]:
[tex]\[ y - 0 = \frac{5}{3}(x - 3) \][/tex]
[tex]\[ y = \frac{5}{3}x - \frac{5}{3} \cdot 3 \][/tex]
[tex]\[ y = \frac{5}{3}x - 5 \][/tex]
4. Convert the equation to standard form:
- Multiply both sides of the equation by 3 to eliminate the fraction:
[tex]\[ 3y = 5x - 15 \][/tex]
- Rearrange to form [tex]\(Ax + By = C\)[/tex]:
[tex]\[ 5x - 3y = 15 \][/tex]
5. Check which provided line matches this equation:
- The given options were:
[tex]\[ \begin{aligned} &1. \ 3x + 5y = -9 \\ &2. \ 3x + 5y = 9 \\ &3. \ 5x - 3y = -15 \\ &4. \ 5x - 3y = 15 \\ \end{aligned} \][/tex]
- The equation [tex]\(5x - 3y = 15\)[/tex] matches option 4.
Therefore, the equation of the line that is perpendicular to the given line [tex]\(3x + 5y = -9\)[/tex] and passes through the point [tex]\((3,0)\)[/tex] is given by:
[tex]\[ \boxed{4} \][/tex]
1. Find the slope of the given line [tex]\(3x + 5y = -9\)[/tex]:
- Start with the standard form [tex]\(Ax + By = C\)[/tex]. The slope of a line [tex]\(Ax + By = C\)[/tex] is given by [tex]\(-A/B\)[/tex].
- For the given line [tex]\(3x + 5y = -9\)[/tex], [tex]\(A = 3\)[/tex] and [tex]\(B = 5\)[/tex].
- Thus, the slope [tex]\(m\)[/tex] of the line is [tex]\(-\frac{3}{5}\)[/tex].
2. Determine the slope of the line perpendicular to the given line:
- The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\(-\frac{3}{5}\)[/tex] is [tex]\(\frac{5}{3}\)[/tex].
3. Use point-slope form to find the equation of the perpendicular line:
- Point-slope form is given by [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the given point.
- Substituting [tex]\(m = \frac{5}{3}\)[/tex] and [tex]\((x_1, y_1) = (3, 0)\)[/tex]:
[tex]\[ y - 0 = \frac{5}{3}(x - 3) \][/tex]
[tex]\[ y = \frac{5}{3}x - \frac{5}{3} \cdot 3 \][/tex]
[tex]\[ y = \frac{5}{3}x - 5 \][/tex]
4. Convert the equation to standard form:
- Multiply both sides of the equation by 3 to eliminate the fraction:
[tex]\[ 3y = 5x - 15 \][/tex]
- Rearrange to form [tex]\(Ax + By = C\)[/tex]:
[tex]\[ 5x - 3y = 15 \][/tex]
5. Check which provided line matches this equation:
- The given options were:
[tex]\[ \begin{aligned} &1. \ 3x + 5y = -9 \\ &2. \ 3x + 5y = 9 \\ &3. \ 5x - 3y = -15 \\ &4. \ 5x - 3y = 15 \\ \end{aligned} \][/tex]
- The equation [tex]\(5x - 3y = 15\)[/tex] matches option 4.
Therefore, the equation of the line that is perpendicular to the given line [tex]\(3x + 5y = -9\)[/tex] and passes through the point [tex]\((3,0)\)[/tex] is given by:
[tex]\[ \boxed{4} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.