Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters, follow these steps:
1. Identify the parameters of the normal distribution:
- Mean ([tex]\(\mu\)[/tex]) = 25 meters.
- Standard deviation ([tex]\(\sigma\)[/tex]) = 6 meters.
2. Find the z-score for the height threshold (37 meters):
The z-score is a measure of how many standard deviations an element is from the mean. It is calculated using the formula:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
where [tex]\(X = 37\)[/tex] meters.
[tex]\[ z = \frac{37 - 25}{6} = \frac{12}{6} = 2.0 \][/tex]
3. Locate the cumulative probability for the z-score of 2.0 in the standard normal distribution table:
According to the given table:
[tex]\[ \begin{array}{|c|c|} \hline z & \text{Probability} \\ \hline 2.00 & 0.9772 \\ \hline \end{array} \][/tex]
This probability (0.9772) represents the area to the left of [tex]\(z = 2.0\)[/tex].
4. Determine the probability of a tree having a height greater than or equal to 37 meters:
Since we need the probability of a height greater than or equal to 37 meters, we are interested in the right tail of the distribution. The area to the right of [tex]\(z = 2.0\)[/tex] can be found by subtracting the cumulative probability from 1.
[tex]\[ P(X \geq 37) = 1 - P(X < 37) = 1 - 0.9772 = 0.0228 \][/tex]
5. Convert the probability into percentage:
[tex]\[ P(X \geq 37) \times 100 = 0.0228 \times 100 = 2.28\% \][/tex]
So, the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters is approximately [tex]\(2.3\% \)[/tex].
1. Identify the parameters of the normal distribution:
- Mean ([tex]\(\mu\)[/tex]) = 25 meters.
- Standard deviation ([tex]\(\sigma\)[/tex]) = 6 meters.
2. Find the z-score for the height threshold (37 meters):
The z-score is a measure of how many standard deviations an element is from the mean. It is calculated using the formula:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
where [tex]\(X = 37\)[/tex] meters.
[tex]\[ z = \frac{37 - 25}{6} = \frac{12}{6} = 2.0 \][/tex]
3. Locate the cumulative probability for the z-score of 2.0 in the standard normal distribution table:
According to the given table:
[tex]\[ \begin{array}{|c|c|} \hline z & \text{Probability} \\ \hline 2.00 & 0.9772 \\ \hline \end{array} \][/tex]
This probability (0.9772) represents the area to the left of [tex]\(z = 2.0\)[/tex].
4. Determine the probability of a tree having a height greater than or equal to 37 meters:
Since we need the probability of a height greater than or equal to 37 meters, we are interested in the right tail of the distribution. The area to the right of [tex]\(z = 2.0\)[/tex] can be found by subtracting the cumulative probability from 1.
[tex]\[ P(X \geq 37) = 1 - P(X < 37) = 1 - 0.9772 = 0.0228 \][/tex]
5. Convert the probability into percentage:
[tex]\[ P(X \geq 37) \times 100 = 0.0228 \times 100 = 2.28\% \][/tex]
So, the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters is approximately [tex]\(2.3\% \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.