Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters, follow these steps:
1. Identify the parameters of the normal distribution:
- Mean ([tex]\(\mu\)[/tex]) = 25 meters.
- Standard deviation ([tex]\(\sigma\)[/tex]) = 6 meters.
2. Find the z-score for the height threshold (37 meters):
The z-score is a measure of how many standard deviations an element is from the mean. It is calculated using the formula:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
where [tex]\(X = 37\)[/tex] meters.
[tex]\[ z = \frac{37 - 25}{6} = \frac{12}{6} = 2.0 \][/tex]
3. Locate the cumulative probability for the z-score of 2.0 in the standard normal distribution table:
According to the given table:
[tex]\[ \begin{array}{|c|c|} \hline z & \text{Probability} \\ \hline 2.00 & 0.9772 \\ \hline \end{array} \][/tex]
This probability (0.9772) represents the area to the left of [tex]\(z = 2.0\)[/tex].
4. Determine the probability of a tree having a height greater than or equal to 37 meters:
Since we need the probability of a height greater than or equal to 37 meters, we are interested in the right tail of the distribution. The area to the right of [tex]\(z = 2.0\)[/tex] can be found by subtracting the cumulative probability from 1.
[tex]\[ P(X \geq 37) = 1 - P(X < 37) = 1 - 0.9772 = 0.0228 \][/tex]
5. Convert the probability into percentage:
[tex]\[ P(X \geq 37) \times 100 = 0.0228 \times 100 = 2.28\% \][/tex]
So, the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters is approximately [tex]\(2.3\% \)[/tex].
1. Identify the parameters of the normal distribution:
- Mean ([tex]\(\mu\)[/tex]) = 25 meters.
- Standard deviation ([tex]\(\sigma\)[/tex]) = 6 meters.
2. Find the z-score for the height threshold (37 meters):
The z-score is a measure of how many standard deviations an element is from the mean. It is calculated using the formula:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
where [tex]\(X = 37\)[/tex] meters.
[tex]\[ z = \frac{37 - 25}{6} = \frac{12}{6} = 2.0 \][/tex]
3. Locate the cumulative probability for the z-score of 2.0 in the standard normal distribution table:
According to the given table:
[tex]\[ \begin{array}{|c|c|} \hline z & \text{Probability} \\ \hline 2.00 & 0.9772 \\ \hline \end{array} \][/tex]
This probability (0.9772) represents the area to the left of [tex]\(z = 2.0\)[/tex].
4. Determine the probability of a tree having a height greater than or equal to 37 meters:
Since we need the probability of a height greater than or equal to 37 meters, we are interested in the right tail of the distribution. The area to the right of [tex]\(z = 2.0\)[/tex] can be found by subtracting the cumulative probability from 1.
[tex]\[ P(X \geq 37) = 1 - P(X < 37) = 1 - 0.9772 = 0.0228 \][/tex]
5. Convert the probability into percentage:
[tex]\[ P(X \geq 37) \times 100 = 0.0228 \times 100 = 2.28\% \][/tex]
So, the probability that a randomly selected tree in the forest has a height greater than or equal to 37 meters is approximately [tex]\(2.3\% \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.