Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Check here for instructional material to complete this problem.

The variable [tex]\( df \)[/tex] is defined to be the smaller of [tex]\( n_1 - 1 \)[/tex] and [tex]\( n_2 - 1 \)[/tex].

Find [tex]\( df \)[/tex] if [tex]\( n_1 = 122 \)[/tex] and [tex]\( n_2 = 119 \)[/tex].

[tex]\[ df = \square \][/tex] (Type a whole number.)


Sagot :

To find the degrees of freedom ([tex]\(df\)[/tex]) where [tex]\(df\)[/tex] is defined as the smaller of [tex]\(n_1 - 1\)[/tex] and [tex]\(n_2 - 1\)[/tex], and we have [tex]\(n_1 = 122\)[/tex] and [tex]\(n_2 = 119\)[/tex], we can follow these steps:

1. Calculate [tex]\(n_1 - 1\)[/tex]:
[tex]\[ n_1 - 1 = 122 - 1 = 121 \][/tex]

2. Calculate [tex]\(n_2 - 1\)[/tex]:
[tex]\[ n_2 - 1 = 119 - 1 = 118 \][/tex]

3. Determine the smaller value between [tex]\(121\)[/tex] and [tex]\(118\)[/tex]:
[tex]\[ \min(121, 118) = 118 \][/tex]

Therefore, the degrees of freedom ([tex]\(df\)[/tex]) is:
[tex]\[ df = 118 \][/tex]