At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Factorize fully [tex][tex]$16a - 4a^2$[/tex][/tex].

Sagot :

To factorize the expression [tex]\(16a - 4a^2\)[/tex] fully, let's go through it step by step.

1. Identify Common Factors:
The first step is to identify any common factors in the terms of the expression [tex]\(16a - 4a^2\)[/tex]. Both terms [tex]\(16a\)[/tex] and [tex]\(-4a^2\)[/tex] share a common factor of [tex]\(4a\)[/tex].

2. Factor Out the Common Factor:
Once we identify the common factor, we can factor it out of each term:
[tex]\[ 16a - 4a^2 = 4a(4) - 4a(a) \][/tex]

3. Simplify Within Parentheses:
Now, we simplify the expression inside the parentheses:
[tex]\[ 4a(4 - a) \][/tex]

4. Consider the Sign:
After factoring out the common factor, observe if there is any common factor that can be further factored out. In this expression, [tex]\(4a(4 - a)\)[/tex] is already fully factored. However, to get a correct and simpler factorized form, we note that:
[tex]\[ 4a(4 - a) = -4a(a - 4) \][/tex]
Since [tex]\(4a\)[/tex] and [tex]\(-4a\)[/tex] are multiples, the correct factorized form simplifies the expression neatly.

Therefore, the fully factorized form of [tex]\(16a - 4a^2\)[/tex] is:
[tex]\[ -4a(a - 4) \][/tex]