Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To factorize the expression [tex]\(16a - 4a^2\)[/tex] fully, let's go through it step by step.
1. Identify Common Factors:
The first step is to identify any common factors in the terms of the expression [tex]\(16a - 4a^2\)[/tex]. Both terms [tex]\(16a\)[/tex] and [tex]\(-4a^2\)[/tex] share a common factor of [tex]\(4a\)[/tex].
2. Factor Out the Common Factor:
Once we identify the common factor, we can factor it out of each term:
[tex]\[ 16a - 4a^2 = 4a(4) - 4a(a) \][/tex]
3. Simplify Within Parentheses:
Now, we simplify the expression inside the parentheses:
[tex]\[ 4a(4 - a) \][/tex]
4. Consider the Sign:
After factoring out the common factor, observe if there is any common factor that can be further factored out. In this expression, [tex]\(4a(4 - a)\)[/tex] is already fully factored. However, to get a correct and simpler factorized form, we note that:
[tex]\[ 4a(4 - a) = -4a(a - 4) \][/tex]
Since [tex]\(4a\)[/tex] and [tex]\(-4a\)[/tex] are multiples, the correct factorized form simplifies the expression neatly.
Therefore, the fully factorized form of [tex]\(16a - 4a^2\)[/tex] is:
[tex]\[ -4a(a - 4) \][/tex]
1. Identify Common Factors:
The first step is to identify any common factors in the terms of the expression [tex]\(16a - 4a^2\)[/tex]. Both terms [tex]\(16a\)[/tex] and [tex]\(-4a^2\)[/tex] share a common factor of [tex]\(4a\)[/tex].
2. Factor Out the Common Factor:
Once we identify the common factor, we can factor it out of each term:
[tex]\[ 16a - 4a^2 = 4a(4) - 4a(a) \][/tex]
3. Simplify Within Parentheses:
Now, we simplify the expression inside the parentheses:
[tex]\[ 4a(4 - a) \][/tex]
4. Consider the Sign:
After factoring out the common factor, observe if there is any common factor that can be further factored out. In this expression, [tex]\(4a(4 - a)\)[/tex] is already fully factored. However, to get a correct and simpler factorized form, we note that:
[tex]\[ 4a(4 - a) = -4a(a - 4) \][/tex]
Since [tex]\(4a\)[/tex] and [tex]\(-4a\)[/tex] are multiples, the correct factorized form simplifies the expression neatly.
Therefore, the fully factorized form of [tex]\(16a - 4a^2\)[/tex] is:
[tex]\[ -4a(a - 4) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.