Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To factorize the expression [tex]\(16a - 4a^2\)[/tex] fully, let's go through it step by step.
1. Identify Common Factors:
The first step is to identify any common factors in the terms of the expression [tex]\(16a - 4a^2\)[/tex]. Both terms [tex]\(16a\)[/tex] and [tex]\(-4a^2\)[/tex] share a common factor of [tex]\(4a\)[/tex].
2. Factor Out the Common Factor:
Once we identify the common factor, we can factor it out of each term:
[tex]\[ 16a - 4a^2 = 4a(4) - 4a(a) \][/tex]
3. Simplify Within Parentheses:
Now, we simplify the expression inside the parentheses:
[tex]\[ 4a(4 - a) \][/tex]
4. Consider the Sign:
After factoring out the common factor, observe if there is any common factor that can be further factored out. In this expression, [tex]\(4a(4 - a)\)[/tex] is already fully factored. However, to get a correct and simpler factorized form, we note that:
[tex]\[ 4a(4 - a) = -4a(a - 4) \][/tex]
Since [tex]\(4a\)[/tex] and [tex]\(-4a\)[/tex] are multiples, the correct factorized form simplifies the expression neatly.
Therefore, the fully factorized form of [tex]\(16a - 4a^2\)[/tex] is:
[tex]\[ -4a(a - 4) \][/tex]
1. Identify Common Factors:
The first step is to identify any common factors in the terms of the expression [tex]\(16a - 4a^2\)[/tex]. Both terms [tex]\(16a\)[/tex] and [tex]\(-4a^2\)[/tex] share a common factor of [tex]\(4a\)[/tex].
2. Factor Out the Common Factor:
Once we identify the common factor, we can factor it out of each term:
[tex]\[ 16a - 4a^2 = 4a(4) - 4a(a) \][/tex]
3. Simplify Within Parentheses:
Now, we simplify the expression inside the parentheses:
[tex]\[ 4a(4 - a) \][/tex]
4. Consider the Sign:
After factoring out the common factor, observe if there is any common factor that can be further factored out. In this expression, [tex]\(4a(4 - a)\)[/tex] is already fully factored. However, to get a correct and simpler factorized form, we note that:
[tex]\[ 4a(4 - a) = -4a(a - 4) \][/tex]
Since [tex]\(4a\)[/tex] and [tex]\(-4a\)[/tex] are multiples, the correct factorized form simplifies the expression neatly.
Therefore, the fully factorized form of [tex]\(16a - 4a^2\)[/tex] is:
[tex]\[ -4a(a - 4) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.