Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the electrical potential energy stored in the capacitor, we can use the formula:
[tex]\[ PE_e = \frac{1}{2} Q V \][/tex]
where:
- [tex]\(PE_e\)[/tex] is the electrical potential energy,
- [tex]\(Q\)[/tex] is the charge on each plate,
- [tex]\(V\)[/tex] is the potential difference across the plates.
Given values:
- [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]
- [tex]\( V = 40.0 \, \text{V} \)[/tex]
Plug these values into the formula:
[tex]\[ PE_e = \frac{1}{2} \times (8.0 \times 10^{-10} \, \text{C}) \times (40.0 \, \text{V}) \][/tex]
First, perform the multiplication within the parentheses:
[tex]\[ 8.0 \times 10^{-10} \, \text{C} \times 40.0 \, \text{V} = 320.0 \times 10^{-10} \, \text{CV} \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ PE_e = \frac{1}{2} \times 320.0 \times 10^{-10} \, \text{CV} \][/tex]
[tex]\[ PE_e = 160.0 \times 10^{-10} \, \text{J} \][/tex]
Convert [tex]\( 160.0 \times 10^{-10} \, \text{J} \)[/tex] to a more standard scientific notation:
[tex]\[ 160.0 \times 10^{-10} \, \text{J} = 1.6 \times 10^{-8} \, \text{J} \][/tex]
Thus, the electrical potential energy stored in the capacitor is:
[tex]\[ \boxed{1.6 \times 10^{-8} \, \text{J}} \][/tex]
Hence, the correct option is:
A. [tex]\(1.6 \times 10^{-8} \, \text{J}\)[/tex]
[tex]\[ PE_e = \frac{1}{2} Q V \][/tex]
where:
- [tex]\(PE_e\)[/tex] is the electrical potential energy,
- [tex]\(Q\)[/tex] is the charge on each plate,
- [tex]\(V\)[/tex] is the potential difference across the plates.
Given values:
- [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]
- [tex]\( V = 40.0 \, \text{V} \)[/tex]
Plug these values into the formula:
[tex]\[ PE_e = \frac{1}{2} \times (8.0 \times 10^{-10} \, \text{C}) \times (40.0 \, \text{V}) \][/tex]
First, perform the multiplication within the parentheses:
[tex]\[ 8.0 \times 10^{-10} \, \text{C} \times 40.0 \, \text{V} = 320.0 \times 10^{-10} \, \text{CV} \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ PE_e = \frac{1}{2} \times 320.0 \times 10^{-10} \, \text{CV} \][/tex]
[tex]\[ PE_e = 160.0 \times 10^{-10} \, \text{J} \][/tex]
Convert [tex]\( 160.0 \times 10^{-10} \, \text{J} \)[/tex] to a more standard scientific notation:
[tex]\[ 160.0 \times 10^{-10} \, \text{J} = 1.6 \times 10^{-8} \, \text{J} \][/tex]
Thus, the electrical potential energy stored in the capacitor is:
[tex]\[ \boxed{1.6 \times 10^{-8} \, \text{J}} \][/tex]
Hence, the correct option is:
A. [tex]\(1.6 \times 10^{-8} \, \text{J}\)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.