Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the electrical potential energy stored in the capacitor, we can use the formula:
[tex]\[ PE_e = \frac{1}{2} Q V \][/tex]
where:
- [tex]\(PE_e\)[/tex] is the electrical potential energy,
- [tex]\(Q\)[/tex] is the charge on each plate,
- [tex]\(V\)[/tex] is the potential difference across the plates.
Given values:
- [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]
- [tex]\( V = 40.0 \, \text{V} \)[/tex]
Plug these values into the formula:
[tex]\[ PE_e = \frac{1}{2} \times (8.0 \times 10^{-10} \, \text{C}) \times (40.0 \, \text{V}) \][/tex]
First, perform the multiplication within the parentheses:
[tex]\[ 8.0 \times 10^{-10} \, \text{C} \times 40.0 \, \text{V} = 320.0 \times 10^{-10} \, \text{CV} \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ PE_e = \frac{1}{2} \times 320.0 \times 10^{-10} \, \text{CV} \][/tex]
[tex]\[ PE_e = 160.0 \times 10^{-10} \, \text{J} \][/tex]
Convert [tex]\( 160.0 \times 10^{-10} \, \text{J} \)[/tex] to a more standard scientific notation:
[tex]\[ 160.0 \times 10^{-10} \, \text{J} = 1.6 \times 10^{-8} \, \text{J} \][/tex]
Thus, the electrical potential energy stored in the capacitor is:
[tex]\[ \boxed{1.6 \times 10^{-8} \, \text{J}} \][/tex]
Hence, the correct option is:
A. [tex]\(1.6 \times 10^{-8} \, \text{J}\)[/tex]
[tex]\[ PE_e = \frac{1}{2} Q V \][/tex]
where:
- [tex]\(PE_e\)[/tex] is the electrical potential energy,
- [tex]\(Q\)[/tex] is the charge on each plate,
- [tex]\(V\)[/tex] is the potential difference across the plates.
Given values:
- [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]
- [tex]\( V = 40.0 \, \text{V} \)[/tex]
Plug these values into the formula:
[tex]\[ PE_e = \frac{1}{2} \times (8.0 \times 10^{-10} \, \text{C}) \times (40.0 \, \text{V}) \][/tex]
First, perform the multiplication within the parentheses:
[tex]\[ 8.0 \times 10^{-10} \, \text{C} \times 40.0 \, \text{V} = 320.0 \times 10^{-10} \, \text{CV} \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ PE_e = \frac{1}{2} \times 320.0 \times 10^{-10} \, \text{CV} \][/tex]
[tex]\[ PE_e = 160.0 \times 10^{-10} \, \text{J} \][/tex]
Convert [tex]\( 160.0 \times 10^{-10} \, \text{J} \)[/tex] to a more standard scientific notation:
[tex]\[ 160.0 \times 10^{-10} \, \text{J} = 1.6 \times 10^{-8} \, \text{J} \][/tex]
Thus, the electrical potential energy stored in the capacitor is:
[tex]\[ \boxed{1.6 \times 10^{-8} \, \text{J}} \][/tex]
Hence, the correct option is:
A. [tex]\(1.6 \times 10^{-8} \, \text{J}\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.