Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the distance between the two points [tex]\( C \)[/tex] and [tex]\( D \)[/tex], we can use the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of point [tex]\( C \)[/tex] are [tex]\((-1, 4)\)[/tex], and the coordinates of point [tex]\( D \)[/tex] are [tex]\((2, 0)\)[/tex]. Let's break it down step by step:
1. Identify the coordinates:
- Point [tex]\( C \)[/tex] ( [tex]\( x_1, y_1 \)[/tex] ) = [tex]\((-1, 4)\)[/tex]
- Point [tex]\( D \)[/tex] ( [tex]\( x_2, y_2 \)[/tex] ) = [tex]\((2, 0)\)[/tex]
2. Calculate the differences in the x and y coordinates:
- [tex]\( \Delta x = x_2 - x_1 = 2 - (-1) = 3 \)[/tex]
- [tex]\( \Delta y = y_2 - y_1 = 0 - 4 = -4 \)[/tex]
3. Square each difference:
- [tex]\( (\Delta x)^2 = 3^2 = 9 \)[/tex]
- [tex]\( (\Delta y)^2 = (-4)^2 = 16 \)[/tex]
4. Sum the squares of the differences:
- [tex]\( (\Delta x)^2 + (\Delta y)^2 = 9 + 16 = 25 \)[/tex]
5. Take the square root of the sum to find the distance:
- [tex]\( d = \sqrt{25} = 5 \)[/tex]
So, the distance between points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 5 \)[/tex] units.
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of point [tex]\( C \)[/tex] are [tex]\((-1, 4)\)[/tex], and the coordinates of point [tex]\( D \)[/tex] are [tex]\((2, 0)\)[/tex]. Let's break it down step by step:
1. Identify the coordinates:
- Point [tex]\( C \)[/tex] ( [tex]\( x_1, y_1 \)[/tex] ) = [tex]\((-1, 4)\)[/tex]
- Point [tex]\( D \)[/tex] ( [tex]\( x_2, y_2 \)[/tex] ) = [tex]\((2, 0)\)[/tex]
2. Calculate the differences in the x and y coordinates:
- [tex]\( \Delta x = x_2 - x_1 = 2 - (-1) = 3 \)[/tex]
- [tex]\( \Delta y = y_2 - y_1 = 0 - 4 = -4 \)[/tex]
3. Square each difference:
- [tex]\( (\Delta x)^2 = 3^2 = 9 \)[/tex]
- [tex]\( (\Delta y)^2 = (-4)^2 = 16 \)[/tex]
4. Sum the squares of the differences:
- [tex]\( (\Delta x)^2 + (\Delta y)^2 = 9 + 16 = 25 \)[/tex]
5. Take the square root of the sum to find the distance:
- [tex]\( d = \sqrt{25} = 5 \)[/tex]
So, the distance between points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 5 \)[/tex] units.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.