Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the distance between the two points [tex]\( C \)[/tex] and [tex]\( D \)[/tex], we can use the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of point [tex]\( C \)[/tex] are [tex]\((-1, 4)\)[/tex], and the coordinates of point [tex]\( D \)[/tex] are [tex]\((2, 0)\)[/tex]. Let's break it down step by step:
1. Identify the coordinates:
- Point [tex]\( C \)[/tex] ( [tex]\( x_1, y_1 \)[/tex] ) = [tex]\((-1, 4)\)[/tex]
- Point [tex]\( D \)[/tex] ( [tex]\( x_2, y_2 \)[/tex] ) = [tex]\((2, 0)\)[/tex]
2. Calculate the differences in the x and y coordinates:
- [tex]\( \Delta x = x_2 - x_1 = 2 - (-1) = 3 \)[/tex]
- [tex]\( \Delta y = y_2 - y_1 = 0 - 4 = -4 \)[/tex]
3. Square each difference:
- [tex]\( (\Delta x)^2 = 3^2 = 9 \)[/tex]
- [tex]\( (\Delta y)^2 = (-4)^2 = 16 \)[/tex]
4. Sum the squares of the differences:
- [tex]\( (\Delta x)^2 + (\Delta y)^2 = 9 + 16 = 25 \)[/tex]
5. Take the square root of the sum to find the distance:
- [tex]\( d = \sqrt{25} = 5 \)[/tex]
So, the distance between points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 5 \)[/tex] units.
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, the coordinates of point [tex]\( C \)[/tex] are [tex]\((-1, 4)\)[/tex], and the coordinates of point [tex]\( D \)[/tex] are [tex]\((2, 0)\)[/tex]. Let's break it down step by step:
1. Identify the coordinates:
- Point [tex]\( C \)[/tex] ( [tex]\( x_1, y_1 \)[/tex] ) = [tex]\((-1, 4)\)[/tex]
- Point [tex]\( D \)[/tex] ( [tex]\( x_2, y_2 \)[/tex] ) = [tex]\((2, 0)\)[/tex]
2. Calculate the differences in the x and y coordinates:
- [tex]\( \Delta x = x_2 - x_1 = 2 - (-1) = 3 \)[/tex]
- [tex]\( \Delta y = y_2 - y_1 = 0 - 4 = -4 \)[/tex]
3. Square each difference:
- [tex]\( (\Delta x)^2 = 3^2 = 9 \)[/tex]
- [tex]\( (\Delta y)^2 = (-4)^2 = 16 \)[/tex]
4. Sum the squares of the differences:
- [tex]\( (\Delta x)^2 + (\Delta y)^2 = 9 + 16 = 25 \)[/tex]
5. Take the square root of the sum to find the distance:
- [tex]\( d = \sqrt{25} = 5 \)[/tex]
So, the distance between points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 5 \)[/tex] units.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.