Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Alright, let’s work through the problem step by step:
### Step 1: Initial Given Conditions
- Initial value of the car, [tex]\( V_0 = \$20,000 \)[/tex]
- Annual depreciation rate, [tex]\( r = 18\% \)[/tex] or [tex]\( r = 0.18 \)[/tex]
### Step 2: Convert Annual Depreciation to Quarterly Depreciation
To find the quarterly depreciation factor:
1. First, find the annual depreciation factor:
[tex]\[ 1 - r = 1 - 0.18 = 0.82 \][/tex]
2. Take the fourth root of the annual factor to get the quarterly factor:
[tex]\[ \text{quarterly\_factor} = 0.82^{(1/4)} \approx 0.9516 \quad (\text{rounded to four decimal places}) \][/tex]
### Step 3: Finding the Quarterly Rate of Change
To find the quarterly rate of change, we need to determine how much value the car loses each quarter:
1. Subtract the quarterly factor from 1 to get the quarterly depreciation rate:
[tex]\[ \text{quarterly\_rate} = 1 - 0.9516 \approx 0.0484 \][/tex]
2. Convert this rate to a percentage:
[tex]\[ \text{quarterly\_rate\_percentage} = 0.0484 \times 100 = 4.84\% \][/tex]
### Step 4: Constructing the Function
The value of the car [tex]\( f(t) \)[/tex] after [tex]\( t \)[/tex] years can be expressed by considering its quarterly decrease:
1. Each year has 4 quarters, so after [tex]\( t \)[/tex] years, there are [tex]\( 4t \)[/tex] quarters.
2. The value of the car after [tex]\( 4t \)[/tex] quarters is given by:
[tex]\[ f(t) = V_0 \times (\text{quarterly\_factor})^{4t} \][/tex]
Substituting the values, we get:
[tex]\[ f(t) = 20000 \times (0.9516)^{4t} \][/tex]
### Final Answer:
#### Function:
The function that represents the value of the car after [tex]\( t \)[/tex] years is:
[tex]\[ f(t) = 20000 \times (0.9516)^{4t} \][/tex]
#### Quarterly Rate of Change:
The percentage rate of change per quarter, to the nearest hundredth of a percent, is:
[tex]\[ \boxed{4.84\%} \][/tex]
Thus, the complete function and the quarterly rate of change are:
[tex]\[ f(t) = 20000 \times (0.9516)^{4t} \quad \text{and the quarterly rate is 4.84\%} \][/tex]
### Step 1: Initial Given Conditions
- Initial value of the car, [tex]\( V_0 = \$20,000 \)[/tex]
- Annual depreciation rate, [tex]\( r = 18\% \)[/tex] or [tex]\( r = 0.18 \)[/tex]
### Step 2: Convert Annual Depreciation to Quarterly Depreciation
To find the quarterly depreciation factor:
1. First, find the annual depreciation factor:
[tex]\[ 1 - r = 1 - 0.18 = 0.82 \][/tex]
2. Take the fourth root of the annual factor to get the quarterly factor:
[tex]\[ \text{quarterly\_factor} = 0.82^{(1/4)} \approx 0.9516 \quad (\text{rounded to four decimal places}) \][/tex]
### Step 3: Finding the Quarterly Rate of Change
To find the quarterly rate of change, we need to determine how much value the car loses each quarter:
1. Subtract the quarterly factor from 1 to get the quarterly depreciation rate:
[tex]\[ \text{quarterly\_rate} = 1 - 0.9516 \approx 0.0484 \][/tex]
2. Convert this rate to a percentage:
[tex]\[ \text{quarterly\_rate\_percentage} = 0.0484 \times 100 = 4.84\% \][/tex]
### Step 4: Constructing the Function
The value of the car [tex]\( f(t) \)[/tex] after [tex]\( t \)[/tex] years can be expressed by considering its quarterly decrease:
1. Each year has 4 quarters, so after [tex]\( t \)[/tex] years, there are [tex]\( 4t \)[/tex] quarters.
2. The value of the car after [tex]\( 4t \)[/tex] quarters is given by:
[tex]\[ f(t) = V_0 \times (\text{quarterly\_factor})^{4t} \][/tex]
Substituting the values, we get:
[tex]\[ f(t) = 20000 \times (0.9516)^{4t} \][/tex]
### Final Answer:
#### Function:
The function that represents the value of the car after [tex]\( t \)[/tex] years is:
[tex]\[ f(t) = 20000 \times (0.9516)^{4t} \][/tex]
#### Quarterly Rate of Change:
The percentage rate of change per quarter, to the nearest hundredth of a percent, is:
[tex]\[ \boxed{4.84\%} \][/tex]
Thus, the complete function and the quarterly rate of change are:
[tex]\[ f(t) = 20000 \times (0.9516)^{4t} \quad \text{and the quarterly rate is 4.84\%} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.