Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find all the roots of the polynomial [tex]\( f(x) = x^3 + 10x^2 - 25x - 250 \)[/tex], given that one of the roots is [tex]\( x = -10 \)[/tex]:
1. Factoring out the known root:
Since [tex]\( x = -10 \)[/tex] is a root, [tex]\( (x + 10) \)[/tex] must be a factor of [tex]\( f(x) \)[/tex]. We can perform polynomial division to factor [tex]\( f(x) \)[/tex] by [tex]\( (x + 10) \)[/tex].
2. Divide [tex]\( f(x) \)[/tex] by [tex]\( (x + 10) \)[/tex] using synthetic division or long division:
We need to divide [tex]\( x^3 + 10x^2 - 25x - 250 \)[/tex] by [tex]\( x + 10 \)[/tex].
3. Set up the synthetic division:
- The coefficients of [tex]\( f(x) \)[/tex] are: 1, 10, -25, and -250.
- We'll use [tex]\( -10 \)[/tex] as the root.
```
[-10 | 1 10 -25 -250]
| -10 0 250
----------------------
1 0 -25 0
```
This gives us a quotient of [tex]\( x^2 - 25 \)[/tex] and a remainder of 0.
4. Solve the quadratic equation:
Now that we have factored [tex]\( f(x) \)[/tex] as [tex]\( (x + 10)(x^2 - 25) \)[/tex], we need to solve [tex]\( x^2 - 25 = 0 \)[/tex].
[tex]\[ x^2 - 25 = 0 \][/tex]
This simplifies to:
[tex]\[ (x - 5)(x + 5) = 0 \][/tex]
5. Find the roots from the quadratic:
The solutions to [tex]\( (x - 5)(x + 5) = 0 \)[/tex] are:
[tex]\[ x = 5 \quad \text{and} \quad x = -5 \][/tex]
6. Combine all roots:
Including the given root [tex]\( x = -10 \)[/tex], the complete set of roots of the polynomial [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -10, x = -5, x = 5 \][/tex]
Therefore, the roots of [tex]\( f(x) = x^3 + 10x^2 - 25x - 250 \)[/tex] are [tex]\(\boxed{x = -10, x = -5, x = 5}\)[/tex].
1. Factoring out the known root:
Since [tex]\( x = -10 \)[/tex] is a root, [tex]\( (x + 10) \)[/tex] must be a factor of [tex]\( f(x) \)[/tex]. We can perform polynomial division to factor [tex]\( f(x) \)[/tex] by [tex]\( (x + 10) \)[/tex].
2. Divide [tex]\( f(x) \)[/tex] by [tex]\( (x + 10) \)[/tex] using synthetic division or long division:
We need to divide [tex]\( x^3 + 10x^2 - 25x - 250 \)[/tex] by [tex]\( x + 10 \)[/tex].
3. Set up the synthetic division:
- The coefficients of [tex]\( f(x) \)[/tex] are: 1, 10, -25, and -250.
- We'll use [tex]\( -10 \)[/tex] as the root.
```
[-10 | 1 10 -25 -250]
| -10 0 250
----------------------
1 0 -25 0
```
This gives us a quotient of [tex]\( x^2 - 25 \)[/tex] and a remainder of 0.
4. Solve the quadratic equation:
Now that we have factored [tex]\( f(x) \)[/tex] as [tex]\( (x + 10)(x^2 - 25) \)[/tex], we need to solve [tex]\( x^2 - 25 = 0 \)[/tex].
[tex]\[ x^2 - 25 = 0 \][/tex]
This simplifies to:
[tex]\[ (x - 5)(x + 5) = 0 \][/tex]
5. Find the roots from the quadratic:
The solutions to [tex]\( (x - 5)(x + 5) = 0 \)[/tex] are:
[tex]\[ x = 5 \quad \text{and} \quad x = -5 \][/tex]
6. Combine all roots:
Including the given root [tex]\( x = -10 \)[/tex], the complete set of roots of the polynomial [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -10, x = -5, x = 5 \][/tex]
Therefore, the roots of [tex]\( f(x) = x^3 + 10x^2 - 25x - 250 \)[/tex] are [tex]\(\boxed{x = -10, x = -5, x = 5}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.