Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To express [tex]\(\cot \left(\cos^{-1} x\right)\)[/tex] in terms of [tex]\(x\)[/tex], follow these steps:
1. Understand the function [tex]\(\cos^{-1} x\)[/tex]:
- [tex]\(\cos^{-1} x\)[/tex] (or arccosine of [tex]\(x\)[/tex]) is the angle [tex]\(\theta\)[/tex] such that [tex]\(\cos(\theta) = x\)[/tex].
- Thus, denote [tex]\(\theta = \cos^{-1} x\)[/tex]. Consequently, [tex]\(\cos(\theta) = x\)[/tex].
2. Express [tex]\(\cot(\theta)\)[/tex] in terms of trigonometric functions:
- The cotangent function is given by: [tex]\(\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}\)[/tex].
3. Substitute [tex]\(\cos(\theta)\)[/tex]:
- Since [tex]\(\cos(\theta) = x\)[/tex], we need to find [tex]\(\sin(\theta)\)[/tex].
4. Use the Pythagorean identity for sine:
- The identity [tex]\(\sin^2(\theta) + \cos^2(\theta) = 1\)[/tex] helps here.
- Substitute [tex]\(\cos(\theta) = x\)[/tex] into the identity: [tex]\(\sin^2(\theta) + x^2 = 1\)[/tex].
- Solving for [tex]\(\sin^2(\theta)\)[/tex]: [tex]\(\sin^2(\theta) = 1 - x^2\)[/tex].
- Then, [tex]\(\sin(\theta) = \sqrt{1 - x^2}\)[/tex] (we take the positive root because [tex]\(\theta = \cos^{-1} x\)[/tex] gives an angle in the range [tex]\([0, \pi]\)[/tex], where sine is non-negative).
5. Combine the expressions:
- Now, substitute [tex]\(\cos(\theta) = x\)[/tex] and [tex]\(\sin(\theta) = \sqrt{1 - x^2}\)[/tex] into the cotangent expression:
[tex]\[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{x}{\sqrt{1 - x^2}} \][/tex]
Hence, the expression [tex]\(\cot \left(\cos^{-1} x\right)\)[/tex] in terms of [tex]\(x\)[/tex] is:
[tex]\[ \cot \left(\cos^{-1} x\right) = \frac{x}{\sqrt{1 - x^2}} \][/tex]
This completes the step-by-step process of rewriting [tex]\(\cot \left(\cos^{-1} x\right)\)[/tex] in terms of [tex]\(x\)[/tex].
1. Understand the function [tex]\(\cos^{-1} x\)[/tex]:
- [tex]\(\cos^{-1} x\)[/tex] (or arccosine of [tex]\(x\)[/tex]) is the angle [tex]\(\theta\)[/tex] such that [tex]\(\cos(\theta) = x\)[/tex].
- Thus, denote [tex]\(\theta = \cos^{-1} x\)[/tex]. Consequently, [tex]\(\cos(\theta) = x\)[/tex].
2. Express [tex]\(\cot(\theta)\)[/tex] in terms of trigonometric functions:
- The cotangent function is given by: [tex]\(\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}\)[/tex].
3. Substitute [tex]\(\cos(\theta)\)[/tex]:
- Since [tex]\(\cos(\theta) = x\)[/tex], we need to find [tex]\(\sin(\theta)\)[/tex].
4. Use the Pythagorean identity for sine:
- The identity [tex]\(\sin^2(\theta) + \cos^2(\theta) = 1\)[/tex] helps here.
- Substitute [tex]\(\cos(\theta) = x\)[/tex] into the identity: [tex]\(\sin^2(\theta) + x^2 = 1\)[/tex].
- Solving for [tex]\(\sin^2(\theta)\)[/tex]: [tex]\(\sin^2(\theta) = 1 - x^2\)[/tex].
- Then, [tex]\(\sin(\theta) = \sqrt{1 - x^2}\)[/tex] (we take the positive root because [tex]\(\theta = \cos^{-1} x\)[/tex] gives an angle in the range [tex]\([0, \pi]\)[/tex], where sine is non-negative).
5. Combine the expressions:
- Now, substitute [tex]\(\cos(\theta) = x\)[/tex] and [tex]\(\sin(\theta) = \sqrt{1 - x^2}\)[/tex] into the cotangent expression:
[tex]\[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{x}{\sqrt{1 - x^2}} \][/tex]
Hence, the expression [tex]\(\cot \left(\cos^{-1} x\right)\)[/tex] in terms of [tex]\(x\)[/tex] is:
[tex]\[ \cot \left(\cos^{-1} x\right) = \frac{x}{\sqrt{1 - x^2}} \][/tex]
This completes the step-by-step process of rewriting [tex]\(\cot \left(\cos^{-1} x\right)\)[/tex] in terms of [tex]\(x\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.