Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's delve into solving this step-by-step.
### Part (a): Factorize [tex]\( x^2 + 5x + 6 \)[/tex]
To factorize the quadratic expression [tex]\( x^2 + 5x + 6 \)[/tex], we look for two numbers that multiply to the constant term (6) and add up to the coefficient of the linear term (5).
1. List the pairs of factors of 6:
[tex]\[ (1, 6), (2, 3), (-1, -6), (-2, -3) \][/tex]
2. Identify the pair that sums to 5:
- Among these pairs, [tex]\((2, 3)\)[/tex] is the pair that satisfies this condition because [tex]\( 2 + 3 = 5 \)[/tex].
3. Write the quadratic expression as a product of two binomials:
[tex]\[ x^2 + 5x + 6 = (x + 2)(x + 3) \][/tex]
Therefore, the factorized form of [tex]\( x^2 + 5x + 6 \)[/tex] is:
[tex]\[ (x + 2)(x + 3) \][/tex]
### Part (b): Solve [tex]\( x^2 + 5x + 6 = 0 \)[/tex]
To solve the quadratic equation [tex]\( x^2 + 5x + 6 = 0 \)[/tex], we use the factored form obtained in Part (a):
1. Set the factored form equal to zero:
[tex]\[ (x + 2)(x + 3) = 0 \][/tex]
2. Apply the zero-product property, which states that if a product of factors is zero, at least one of the factors must be zero. Hence, solve for [tex]\( x \)[/tex] in each factor:
[tex]\[ x + 2 = 0 \quad \text{or} \quad x + 3 = 0 \][/tex]
3. Solve each linear equation:
[tex]\[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \][/tex]
[tex]\[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \][/tex]
Therefore, the solutions to the equation [tex]\( x^2 + 5x + 6 = 0 \)[/tex] are:
[tex]\[ x = -3 \quad \text{and} \quad x = -2 \][/tex]
To summarize:
- Part (a): The factorization of [tex]\( x^2 + 5x + 6 \)[/tex] is [tex]\((x + 2)(x + 3)\)[/tex].
- Part (b): The solutions to the equation [tex]\( x^2 + 5x + 6 = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
### Part (a): Factorize [tex]\( x^2 + 5x + 6 \)[/tex]
To factorize the quadratic expression [tex]\( x^2 + 5x + 6 \)[/tex], we look for two numbers that multiply to the constant term (6) and add up to the coefficient of the linear term (5).
1. List the pairs of factors of 6:
[tex]\[ (1, 6), (2, 3), (-1, -6), (-2, -3) \][/tex]
2. Identify the pair that sums to 5:
- Among these pairs, [tex]\((2, 3)\)[/tex] is the pair that satisfies this condition because [tex]\( 2 + 3 = 5 \)[/tex].
3. Write the quadratic expression as a product of two binomials:
[tex]\[ x^2 + 5x + 6 = (x + 2)(x + 3) \][/tex]
Therefore, the factorized form of [tex]\( x^2 + 5x + 6 \)[/tex] is:
[tex]\[ (x + 2)(x + 3) \][/tex]
### Part (b): Solve [tex]\( x^2 + 5x + 6 = 0 \)[/tex]
To solve the quadratic equation [tex]\( x^2 + 5x + 6 = 0 \)[/tex], we use the factored form obtained in Part (a):
1. Set the factored form equal to zero:
[tex]\[ (x + 2)(x + 3) = 0 \][/tex]
2. Apply the zero-product property, which states that if a product of factors is zero, at least one of the factors must be zero. Hence, solve for [tex]\( x \)[/tex] in each factor:
[tex]\[ x + 2 = 0 \quad \text{or} \quad x + 3 = 0 \][/tex]
3. Solve each linear equation:
[tex]\[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \][/tex]
[tex]\[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \][/tex]
Therefore, the solutions to the equation [tex]\( x^2 + 5x + 6 = 0 \)[/tex] are:
[tex]\[ x = -3 \quad \text{and} \quad x = -2 \][/tex]
To summarize:
- Part (a): The factorization of [tex]\( x^2 + 5x + 6 \)[/tex] is [tex]\((x + 2)(x + 3)\)[/tex].
- Part (b): The solutions to the equation [tex]\( x^2 + 5x + 6 = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.