Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether each of the reactions is endothermic or exothermic, we need to examine the sign of the enthalpy change ([tex]\(\Delta H_{\text{rxn}}\)[/tex]) for each reaction:
1. Reaction 1:
[tex]\[ NaOH (s) \rightarrow Na^{+}(aq) + OH^{-}(aq) \quad \Delta H_{\text{rxn}} = -44.5 \, \text{kJ} \][/tex]
The enthalpy change [tex]\(\Delta H_{\text{rxn}}\)[/tex] is given as [tex]\(-44.5\)[/tex] kJ. Because [tex]\(\Delta H_{\text{rxn}}\)[/tex] is negative, this indicates that the reaction releases heat to the surroundings. Therefore, this reaction is exothermic.
2. Reaction 2:
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \quad \Delta H_{\text{rxn}} < 0 \][/tex]
The enthalpy change [tex]\(\Delta H_{\text{rxn}}\)[/tex] is indicated to be less than zero ([tex]\(\Delta H_{\text{rxn}} < 0\)[/tex]). When [tex]\(\Delta H_{\text{rxn}}\)[/tex] is less than zero, it means the reaction releases heat to the surroundings. As a result, this reaction is also exothermic.
3. Reaction 3:
[tex]\[ CH_3COOH(aq) + NaHCO_3(s) \rightarrow CO_2(g) + H_2O(l) + Na^{+}(aq) + CH_3COO^{-}(aq) \quad \Delta H_{\text{rxn}} > 0 \][/tex]
The enthalpy change [tex]\(\Delta H_{\text{rxn}}\)[/tex] is given as greater than zero ([tex]\(\Delta H_{\text{rxn}} > 0\)[/tex]). When [tex]\(\Delta H_{\text{rxn}}\)[/tex] is positive, it means the reaction absorbs heat from the surroundings. Thus, this reaction is endothermic.
Summarizing the results:
1. [tex]\[ NaOH (s) \rightarrow Na^{+}(aq) + OH^{-}(aq) \quad \Delta H_{\text{rxn}} = -44.5 \, \text{kJ} \][/tex]
Exothermic
2. [tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \quad \Delta H_{\text{rxn}} < 0 \][/tex]
Exothermic
3. [tex]\[ CH_3COOH(aq) + NaHCO_3(s) \rightarrow CO_2(g) + H_2O(l) + Na^{+}(aq) + CH_3COO^{-}(aq) \quad \Delta H_{\text{rxn}} > 0 \][/tex]
Endothermic
1. Reaction 1:
[tex]\[ NaOH (s) \rightarrow Na^{+}(aq) + OH^{-}(aq) \quad \Delta H_{\text{rxn}} = -44.5 \, \text{kJ} \][/tex]
The enthalpy change [tex]\(\Delta H_{\text{rxn}}\)[/tex] is given as [tex]\(-44.5\)[/tex] kJ. Because [tex]\(\Delta H_{\text{rxn}}\)[/tex] is negative, this indicates that the reaction releases heat to the surroundings. Therefore, this reaction is exothermic.
2. Reaction 2:
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \quad \Delta H_{\text{rxn}} < 0 \][/tex]
The enthalpy change [tex]\(\Delta H_{\text{rxn}}\)[/tex] is indicated to be less than zero ([tex]\(\Delta H_{\text{rxn}} < 0\)[/tex]). When [tex]\(\Delta H_{\text{rxn}}\)[/tex] is less than zero, it means the reaction releases heat to the surroundings. As a result, this reaction is also exothermic.
3. Reaction 3:
[tex]\[ CH_3COOH(aq) + NaHCO_3(s) \rightarrow CO_2(g) + H_2O(l) + Na^{+}(aq) + CH_3COO^{-}(aq) \quad \Delta H_{\text{rxn}} > 0 \][/tex]
The enthalpy change [tex]\(\Delta H_{\text{rxn}}\)[/tex] is given as greater than zero ([tex]\(\Delta H_{\text{rxn}} > 0\)[/tex]). When [tex]\(\Delta H_{\text{rxn}}\)[/tex] is positive, it means the reaction absorbs heat from the surroundings. Thus, this reaction is endothermic.
Summarizing the results:
1. [tex]\[ NaOH (s) \rightarrow Na^{+}(aq) + OH^{-}(aq) \quad \Delta H_{\text{rxn}} = -44.5 \, \text{kJ} \][/tex]
Exothermic
2. [tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \quad \Delta H_{\text{rxn}} < 0 \][/tex]
Exothermic
3. [tex]\[ CH_3COOH(aq) + NaHCO_3(s) \rightarrow CO_2(g) + H_2O(l) + Na^{+}(aq) + CH_3COO^{-}(aq) \quad \Delta H_{\text{rxn}} > 0 \][/tex]
Endothermic
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.