Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the equation [tex]\(4x^2 - 7x = 3x + 24\)[/tex] step-by-step to find its solutions.
1. Start with the given equation:
[tex]\[ 4x^2 - 7x = 3x + 24 \][/tex]
2. Move all terms to one side to set the equation to 0:
[tex]\[ 4x^2 - 7x - 3x - 24 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 10x - 24 = 0 \][/tex]
3. Use the quadratic formula to solve the simplified equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex]:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients are [tex]\(a = 4\)[/tex], [tex]\(b = -10\)[/tex], and [tex]\(c = -24\)[/tex].
4. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
So,
[tex]\[ \Delta = (-10)^2 - 4 \cdot 4 \cdot (-24) \][/tex]
[tex]\[ \Delta = 100 + 384 \][/tex]
[tex]\[ \Delta = 484 \][/tex]
5. Take the square root of the discriminant:
[tex]\[ \sqrt{484} = 22 \][/tex]
6. Plug the values into the quadratic formula:
[tex]\[ x = \frac{-(-10) \pm 22}{2 \cdot 4} \][/tex]
Simplify:
[tex]\[ x = \frac{10 \pm 22}{8} \][/tex]
7. Calculate the two possible solutions:
- For the positive root:
[tex]\[ x = \frac{10 + 22}{8} = \frac{32}{8} = 4 \][/tex]
- For the negative root:
[tex]\[ x = \frac{10 - 22}{8} = \frac{-12}{8} = -\frac{3}{2} \][/tex]
So, the solutions to the equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex] are:
[tex]\[ x = -\frac{3}{2} \quad \text{and} \quad x = 4 \][/tex]
8. Check which of the given options match these solutions:
- [tex]\( x = -4 \)[/tex] is not a solution.
- [tex]\( x = -3 \)[/tex] is not a solution.
- [tex]\( x = -\frac{3}{2} \)[/tex] is a solution.
- [tex]\( x = \frac{2}{3} \)[/tex] is not a solution.
- [tex]\( x = 2 \)[/tex] is not a solution.
- [tex]\( x = 4 \)[/tex] is a solution.
Therefore, the correct solutions are:
[tex]\[ x = -\frac{3}{2} \quad \text{and} \quad x = 4 \][/tex]
1. Start with the given equation:
[tex]\[ 4x^2 - 7x = 3x + 24 \][/tex]
2. Move all terms to one side to set the equation to 0:
[tex]\[ 4x^2 - 7x - 3x - 24 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 10x - 24 = 0 \][/tex]
3. Use the quadratic formula to solve the simplified equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex]:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients are [tex]\(a = 4\)[/tex], [tex]\(b = -10\)[/tex], and [tex]\(c = -24\)[/tex].
4. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
So,
[tex]\[ \Delta = (-10)^2 - 4 \cdot 4 \cdot (-24) \][/tex]
[tex]\[ \Delta = 100 + 384 \][/tex]
[tex]\[ \Delta = 484 \][/tex]
5. Take the square root of the discriminant:
[tex]\[ \sqrt{484} = 22 \][/tex]
6. Plug the values into the quadratic formula:
[tex]\[ x = \frac{-(-10) \pm 22}{2 \cdot 4} \][/tex]
Simplify:
[tex]\[ x = \frac{10 \pm 22}{8} \][/tex]
7. Calculate the two possible solutions:
- For the positive root:
[tex]\[ x = \frac{10 + 22}{8} = \frac{32}{8} = 4 \][/tex]
- For the negative root:
[tex]\[ x = \frac{10 - 22}{8} = \frac{-12}{8} = -\frac{3}{2} \][/tex]
So, the solutions to the equation [tex]\(4x^2 - 10x - 24 = 0\)[/tex] are:
[tex]\[ x = -\frac{3}{2} \quad \text{and} \quad x = 4 \][/tex]
8. Check which of the given options match these solutions:
- [tex]\( x = -4 \)[/tex] is not a solution.
- [tex]\( x = -3 \)[/tex] is not a solution.
- [tex]\( x = -\frac{3}{2} \)[/tex] is a solution.
- [tex]\( x = \frac{2}{3} \)[/tex] is not a solution.
- [tex]\( x = 2 \)[/tex] is not a solution.
- [tex]\( x = 4 \)[/tex] is a solution.
Therefore, the correct solutions are:
[tex]\[ x = -\frac{3}{2} \quad \text{and} \quad x = 4 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.