Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which formula describes the sequence [tex]\(-3, \frac{3}{5}, -\frac{3}{25}, \frac{3}{125}, -\frac{3}{625}\)[/tex], let's analyze the pattern and components of the sequence step-by-step.
1. Identify the initial term and the progression:
- The initial term (first term) of the sequence is [tex]\(-3\)[/tex].
2. Determine the common ratio:
- The sequence alternates in sign and the absolute value of each term is multiplied by [tex]\(\frac{1}{5}\)[/tex].
- Thus, the common ratio will involve both changing the sign and multiplying by [tex]\(\frac{1}{5}\)[/tex].
3. Analyze the sign pattern:
- The sequence alternates in sign: negative, positive, negative, positive, negative, and so on.
- This suggests that the formula involves [tex]\((-1)^{x-1}\)[/tex] to alternate the signs.
4. Combine initial term, ratio, and signs:
- The general term of the sequence can therefore be written incorporating all these factors:
[tex]\[ f(x) = -3 \cdot \left( -\frac{1}{5} \right)^{x-1} \][/tex]
- Here [tex]\(-3\)[/tex] is the initial term, [tex]\(-\frac{1}{5}\)[/tex] accounts for both the negative sign and the denominator of each successive term powered to [tex]\((x-1)\)[/tex].
Putting it all together, the formula that correctly describes the sequence is:
[tex]\[ f(x) = -3 \left( -\frac{1}{5} \right)^{x-1} \][/tex]
Thus, the correct formula for the given sequence is:
[tex]\[ f(x) = -3\left( -\frac{1}{5} \right)^{x-1} \][/tex]
1. Identify the initial term and the progression:
- The initial term (first term) of the sequence is [tex]\(-3\)[/tex].
2. Determine the common ratio:
- The sequence alternates in sign and the absolute value of each term is multiplied by [tex]\(\frac{1}{5}\)[/tex].
- Thus, the common ratio will involve both changing the sign and multiplying by [tex]\(\frac{1}{5}\)[/tex].
3. Analyze the sign pattern:
- The sequence alternates in sign: negative, positive, negative, positive, negative, and so on.
- This suggests that the formula involves [tex]\((-1)^{x-1}\)[/tex] to alternate the signs.
4. Combine initial term, ratio, and signs:
- The general term of the sequence can therefore be written incorporating all these factors:
[tex]\[ f(x) = -3 \cdot \left( -\frac{1}{5} \right)^{x-1} \][/tex]
- Here [tex]\(-3\)[/tex] is the initial term, [tex]\(-\frac{1}{5}\)[/tex] accounts for both the negative sign and the denominator of each successive term powered to [tex]\((x-1)\)[/tex].
Putting it all together, the formula that correctly describes the sequence is:
[tex]\[ f(x) = -3 \left( -\frac{1}{5} \right)^{x-1} \][/tex]
Thus, the correct formula for the given sequence is:
[tex]\[ f(x) = -3\left( -\frac{1}{5} \right)^{x-1} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.