Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's determine the relationship between the lines that pass through the given points.
### Step 1: Find the slope of each line
The slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
#### Line [tex]\(a\)[/tex]
Points: [tex]\((-5, 2)\)[/tex] and [tex]\((1, 6)\)[/tex]
Calculate the slope:
[tex]\[ \text{slope}_a = \frac{6 - 2}{1 - (-5)} = \frac{4}{1 + 5} = \frac{4}{6} = \frac{2}{3} \][/tex]
#### Line [tex]\(b\)[/tex]
Points: [tex]\((-4, -2)\)[/tex] and [tex]\((2, 2)\)[/tex]
Calculate the slope:
[tex]\[ \text{slope}_b = \frac{2 - (-2)}{2 - (-4)} = \frac{2 + 2}{2 + 4} = \frac{4}{6} = \frac{2}{3} \][/tex]
### Step 2: Compare the slopes to determine the relationship
1. Parallel lines: Two lines are parallel if their slopes are equal.
2. Perpendicular lines: Two lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].
3. Neither: If neither condition is met, then the lines are neither parallel nor perpendicular.
#### Check for parallel lines:
Since [tex]\(\text{slope}_a = \text{slope}_b = \frac{2}{3}\)[/tex], the slopes are equal.
Hence, the two lines are parallel.
### Final Answer:
[tex]\[ \boxed{\text{Parallel}} \][/tex]
### Step 1: Find the slope of each line
The slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
#### Line [tex]\(a\)[/tex]
Points: [tex]\((-5, 2)\)[/tex] and [tex]\((1, 6)\)[/tex]
Calculate the slope:
[tex]\[ \text{slope}_a = \frac{6 - 2}{1 - (-5)} = \frac{4}{1 + 5} = \frac{4}{6} = \frac{2}{3} \][/tex]
#### Line [tex]\(b\)[/tex]
Points: [tex]\((-4, -2)\)[/tex] and [tex]\((2, 2)\)[/tex]
Calculate the slope:
[tex]\[ \text{slope}_b = \frac{2 - (-2)}{2 - (-4)} = \frac{2 + 2}{2 + 4} = \frac{4}{6} = \frac{2}{3} \][/tex]
### Step 2: Compare the slopes to determine the relationship
1. Parallel lines: Two lines are parallel if their slopes are equal.
2. Perpendicular lines: Two lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].
3. Neither: If neither condition is met, then the lines are neither parallel nor perpendicular.
#### Check for parallel lines:
Since [tex]\(\text{slope}_a = \text{slope}_b = \frac{2}{3}\)[/tex], the slopes are equal.
Hence, the two lines are parallel.
### Final Answer:
[tex]\[ \boxed{\text{Parallel}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.