Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the integral [tex]\(\int 2bx^3 \, dx\)[/tex], we follow a series of steps to find the antiderivative.
1. Identify the integrand:
The integrand is [tex]\(2bx^3\)[/tex], where [tex]\(b\)[/tex] is a constant and [tex]\(x\)[/tex] is the variable of integration.
2. Apply the power rule for integration:
The power rule for integration states that [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\(C\)[/tex] is the constant of integration, and [tex]\(n \neq -1\)[/tex].
3. Factor out the constant [tex]\(b\)[/tex]:
Since [tex]\(b\)[/tex] is a constant, we can factor it out of the integral:
[tex]\[ \int 2bx^3 \, dx = 2b \int x^3 \, dx \][/tex]
4. Integrate the remaining function [tex]\(x^3\)[/tex]:
Using the power rule for integration:
[tex]\[ \int x^3 \, dx = \frac{x^{3+1}}{3+1} = \frac{x^4}{4} \][/tex]
5. Multiply by the constant [tex]\(2b\)[/tex]:
Now we multiply the result by [tex]\(2b\)[/tex]:
[tex]\[ 2b \cdot \frac{x^4}{4} = \frac{2b x^4}{4} = \frac{b x^4}{2} \][/tex]
6. Include the constant of integration [tex]\(C\)[/tex]:
The final antiderivative includes an arbitrary constant [tex]\(C\)[/tex]:
[tex]\[ \int 2bx^3 \, dx = \frac{b x^4}{2} + C \][/tex]
So, the result of the integral [tex]\(\int 2bx^3 \, dx\)[/tex] is:
[tex]\[ \frac{b x^4}{2} + C \][/tex]
1. Identify the integrand:
The integrand is [tex]\(2bx^3\)[/tex], where [tex]\(b\)[/tex] is a constant and [tex]\(x\)[/tex] is the variable of integration.
2. Apply the power rule for integration:
The power rule for integration states that [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\(C\)[/tex] is the constant of integration, and [tex]\(n \neq -1\)[/tex].
3. Factor out the constant [tex]\(b\)[/tex]:
Since [tex]\(b\)[/tex] is a constant, we can factor it out of the integral:
[tex]\[ \int 2bx^3 \, dx = 2b \int x^3 \, dx \][/tex]
4. Integrate the remaining function [tex]\(x^3\)[/tex]:
Using the power rule for integration:
[tex]\[ \int x^3 \, dx = \frac{x^{3+1}}{3+1} = \frac{x^4}{4} \][/tex]
5. Multiply by the constant [tex]\(2b\)[/tex]:
Now we multiply the result by [tex]\(2b\)[/tex]:
[tex]\[ 2b \cdot \frac{x^4}{4} = \frac{2b x^4}{4} = \frac{b x^4}{2} \][/tex]
6. Include the constant of integration [tex]\(C\)[/tex]:
The final antiderivative includes an arbitrary constant [tex]\(C\)[/tex]:
[tex]\[ \int 2bx^3 \, dx = \frac{b x^4}{2} + C \][/tex]
So, the result of the integral [tex]\(\int 2bx^3 \, dx\)[/tex] is:
[tex]\[ \frac{b x^4}{2} + C \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.