Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the maximum concentration of silver ions ([tex]\( Ag^+ \)[/tex]) in a solution that is [tex]\( 0.025 \, \text{M} \)[/tex] in carbonate ([tex]\( CO_3^{2-} \)[/tex]), we need to consider the solubility product constant ([tex]\( K_{sp} \)[/tex]) of silver carbonate ([tex]\( Ag_2CO_3 \)[/tex]), which is [tex]\( 8.1 \times 10^{-12} \)[/tex].
The dissolution of [tex]\( Ag_2CO_3 \)[/tex] in water can be represented by the following equation:
[tex]\[ Ag_2CO_3 \leftrightarrow 2Ag^+ + CO_3^{2-} \][/tex]
The [tex]\( K_{sp} \)[/tex] expression for this equilibrium is given by:
[tex]\[ K_{sp} = [Ag^+]^2 [CO_3^{2-}] \][/tex]
Given:
[tex]\[ K_{sp} = 8.1 \times 10^{-12} \][/tex]
[tex]\[ [CO_3^{2-}] = 0.025 \, M \][/tex]
We need to find the concentration of [tex]\( Ag^+ \)[/tex], which we will denote as [tex]\( x \)[/tex]. This leads to the following equation:
[tex]\[ 8.1 \times 10^{-12} = [Ag^+]^2 (0.025) \][/tex]
Rearranging to solve for [tex]\( [Ag^+] \)[/tex], we get:
[tex]\[ [Ag^+]^2 = \frac{8.1 \times 10^{-12}}{0.025} \][/tex]
Let's calculate this step by step:
1. Compute the denominator:
[tex]\[ 0.025 = 2.5 \times 10^{-2} \][/tex]
2. Now divide the [tex]\( K_{sp} \)[/tex] by this value:
[tex]\[ \frac{8.1 \times 10^{-12}}{2.5 \times 10^{-2}} = \frac{8.1 \times 10^{-12}}{2.5} \times 10^{2} = 3.24 \times 10^{-10} \][/tex]
3. Finally, take the square root of the result to find [tex]\( [Ag^+] \)[/tex]:
[tex]\[ [Ag^+] = \sqrt{3.24 \times 10^{-10}} \][/tex]
4. Calculating the square root:
[tex]\[ \sqrt{3.24} \approx 1.8 \][/tex]
[tex]\[ \sqrt{10^{-10}} = 10^{-5} \][/tex]
[tex]\[ [Ag^+] = 1.8 \times 10^{-5} \, M \][/tex]
Thus, the maximum concentration of silver ions ([tex]\( Ag^+ \)[/tex]) in this solution is [tex]\( 1.8 \times 10^{-5} \, M \)[/tex].
The correct option is:
c. 1
The dissolution of [tex]\( Ag_2CO_3 \)[/tex] in water can be represented by the following equation:
[tex]\[ Ag_2CO_3 \leftrightarrow 2Ag^+ + CO_3^{2-} \][/tex]
The [tex]\( K_{sp} \)[/tex] expression for this equilibrium is given by:
[tex]\[ K_{sp} = [Ag^+]^2 [CO_3^{2-}] \][/tex]
Given:
[tex]\[ K_{sp} = 8.1 \times 10^{-12} \][/tex]
[tex]\[ [CO_3^{2-}] = 0.025 \, M \][/tex]
We need to find the concentration of [tex]\( Ag^+ \)[/tex], which we will denote as [tex]\( x \)[/tex]. This leads to the following equation:
[tex]\[ 8.1 \times 10^{-12} = [Ag^+]^2 (0.025) \][/tex]
Rearranging to solve for [tex]\( [Ag^+] \)[/tex], we get:
[tex]\[ [Ag^+]^2 = \frac{8.1 \times 10^{-12}}{0.025} \][/tex]
Let's calculate this step by step:
1. Compute the denominator:
[tex]\[ 0.025 = 2.5 \times 10^{-2} \][/tex]
2. Now divide the [tex]\( K_{sp} \)[/tex] by this value:
[tex]\[ \frac{8.1 \times 10^{-12}}{2.5 \times 10^{-2}} = \frac{8.1 \times 10^{-12}}{2.5} \times 10^{2} = 3.24 \times 10^{-10} \][/tex]
3. Finally, take the square root of the result to find [tex]\( [Ag^+] \)[/tex]:
[tex]\[ [Ag^+] = \sqrt{3.24 \times 10^{-10}} \][/tex]
4. Calculating the square root:
[tex]\[ \sqrt{3.24} \approx 1.8 \][/tex]
[tex]\[ \sqrt{10^{-10}} = 10^{-5} \][/tex]
[tex]\[ [Ag^+] = 1.8 \times 10^{-5} \, M \][/tex]
Thus, the maximum concentration of silver ions ([tex]\( Ag^+ \)[/tex]) in this solution is [tex]\( 1.8 \times 10^{-5} \, M \)[/tex].
The correct option is:
c. 1
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.