Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The 11th term of an A.P. is -31 and the 21st term is -71. Find the following:
(a) First term
(b) Common difference
(c) 15th term


Sagot :

Of course! Let's solve this problem step-by-step based on the information provided about the arithmetic progression (A.P.).

### Given:
1. The 11th term [tex]\(a_{11}\)[/tex] is -31.
2. The 21st term [tex]\(a_{21}\)[/tex] is -71.

We will determine:
a) The first term ([tex]\(a\)[/tex]),
b) The common difference ([tex]\(d\)[/tex]),
c) The 15th term ([tex]\(a_{15}\)[/tex]).

### Step-by-Step Solution

An arithmetic progression (A.P.) is characterized by the formula for the [tex]\(n\)[/tex]-th term:
[tex]\[ a_n = a + (n-1)d \][/tex]
where:
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term,
- [tex]\(a\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the position of the term.

#### Step 1: Setting up the equations

Using the given terms:

1. For the 11th term:
[tex]\[ a_{11} = a + 10d = -31 \][/tex]

2. For the 21st term:
[tex]\[ a_{21} = a + 20d = -71 \][/tex]

#### Step 2: Solve for the common difference ([tex]\(d\)[/tex])

We have two equations:
[tex]\[ 1) \quad a + 10d = -31 \][/tex]
[tex]\[ 2) \quad a + 20d = -71 \][/tex]

Subtracting equation (1) from equation (2) to eliminate [tex]\(a\)[/tex]:
[tex]\[ (a + 20d) - (a + 10d) = -71 - (-31) \][/tex]
[tex]\[ 20d - 10d = -71 + 31 \][/tex]
[tex]\[ 10d = -40 \][/tex]

Solving for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{-40}{10} \][/tex]
[tex]\[ d = -4.0 \][/tex]

So, the common difference [tex]\(d\)[/tex] is [tex]\(-4.0\)[/tex].

#### Step 3: Solve for the first term ([tex]\(a\)[/tex])

Substitute the value of [tex]\(d\)[/tex] back into equation (1):
[tex]\[ a + 10(-4.0) = -31 \][/tex]
[tex]\[ a - 40 = -31 \][/tex]

Solving for [tex]\(a\)[/tex]:
[tex]\[ a = -31 + 40 \][/tex]
[tex]\[ a = 9 \][/tex]

So, the first term [tex]\(a\)[/tex] is [tex]\(9\)[/tex].

#### Step 4: Find the 15th term ([tex]\(a_{15}\)[/tex])

Using the formula for the [tex]\(n\)[/tex]-th term:
[tex]\[ a_{15} = a + (15-1)d \][/tex]
[tex]\[ a_{15} = 9 + 14(-4.0) \][/tex]
[tex]\[ a_{15} = 9 - 56 \][/tex]
[tex]\[ a_{15} = -47.0 \][/tex]

So, the 15th term [tex]\(a_{15}\)[/tex] is [tex]\(-47.0\)[/tex].

### Summary of Results
a) The first term [tex]\(a\)[/tex] is [tex]\(9\)[/tex].
b) The common difference [tex]\(d\)[/tex] is [tex]\(-4.0\)[/tex].
c) The 15th term [tex]\(a_{15}\)[/tex] is [tex]\(-47.0\)[/tex].