Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's determine the values of [tex]\( x \)[/tex] that satisfy the given system of equations:
[tex]\[ \begin{cases} y = x^2 + 8x - 5 \\ y = 8x - 4 \end{cases} \][/tex]
### Step 1: Set the equations equal to each other
Since both expressions equal [tex]\( y \)[/tex], we can set them equal to each other:
[tex]\[ x^2 + 8x - 5 = 8x - 4 \][/tex]
### Step 2: Simplify the equation
Subtract [tex]\( 8x \)[/tex] from both sides of the equation to eliminate [tex]\( 8x \)[/tex]:
[tex]\[ x^2 + 8x - 8x - 5 = 8x - 8x - 4 \][/tex]
This simplifies to:
[tex]\[ x^2 - 5 = -4 \][/tex]
Next, add 4 to both sides to isolate the [tex]\( x^2 \)[/tex] term:
[tex]\[ x^2 - 5 + 4 = -4 + 4 \][/tex]
This simplifies further to:
[tex]\[ x^2 - 1 = 0 \][/tex]
### Step 3: Solve the quadratic equation
Add 1 to both sides:
[tex]\[ x^2 = 1 \][/tex]
Now, take the square root of both sides:
[tex]\[ x = \pm 1 \][/tex]
So, the solutions for [tex]\( x \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].
### Step 4: Determine corresponding [tex]\( y \)[/tex] values
We need to find the corresponding [tex]\( y \)[/tex] values for [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex] using one of the original equations, e.g., [tex]\( y = 8x - 4 \)[/tex].
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 8(1) - 4 = 8 - 4 = 4 \][/tex]
Thus, one solution is [tex]\( (1, 4) \)[/tex].
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 8(-1) - 4 = -8 - 4 = -12 \][/tex]
Thus, another solution is [tex]\( (-1, -12) \)[/tex].
### Conclusion
The values of [tex]\( x \)[/tex] that satisfy the system of equations are [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex], with respective [tex]\( y \)[/tex] values of 4 and -12. Therefore, the solutions to the system of equations are:
[tex]\[ (-1, -12) \text{ and } (1, 4) \][/tex]
[tex]\[ \begin{cases} y = x^2 + 8x - 5 \\ y = 8x - 4 \end{cases} \][/tex]
### Step 1: Set the equations equal to each other
Since both expressions equal [tex]\( y \)[/tex], we can set them equal to each other:
[tex]\[ x^2 + 8x - 5 = 8x - 4 \][/tex]
### Step 2: Simplify the equation
Subtract [tex]\( 8x \)[/tex] from both sides of the equation to eliminate [tex]\( 8x \)[/tex]:
[tex]\[ x^2 + 8x - 8x - 5 = 8x - 8x - 4 \][/tex]
This simplifies to:
[tex]\[ x^2 - 5 = -4 \][/tex]
Next, add 4 to both sides to isolate the [tex]\( x^2 \)[/tex] term:
[tex]\[ x^2 - 5 + 4 = -4 + 4 \][/tex]
This simplifies further to:
[tex]\[ x^2 - 1 = 0 \][/tex]
### Step 3: Solve the quadratic equation
Add 1 to both sides:
[tex]\[ x^2 = 1 \][/tex]
Now, take the square root of both sides:
[tex]\[ x = \pm 1 \][/tex]
So, the solutions for [tex]\( x \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].
### Step 4: Determine corresponding [tex]\( y \)[/tex] values
We need to find the corresponding [tex]\( y \)[/tex] values for [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex] using one of the original equations, e.g., [tex]\( y = 8x - 4 \)[/tex].
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 8(1) - 4 = 8 - 4 = 4 \][/tex]
Thus, one solution is [tex]\( (1, 4) \)[/tex].
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 8(-1) - 4 = -8 - 4 = -12 \][/tex]
Thus, another solution is [tex]\( (-1, -12) \)[/tex].
### Conclusion
The values of [tex]\( x \)[/tex] that satisfy the system of equations are [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex], with respective [tex]\( y \)[/tex] values of 4 and -12. Therefore, the solutions to the system of equations are:
[tex]\[ (-1, -12) \text{ and } (1, 4) \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.