At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem, let's break it down step by step.
1. Understand the given data and constants:
- Speed of light, [tex]\( c = 300,000,000 \text{ meters per second} \)[/tex]
- Wavelength of green laser light, [tex]\( \lambda = 532 \text{ nanometers} \)[/tex]
- Conversion factor, [tex]\( 1 \text{ meter} = 1,000,000,000 \text{ nanometers} \)[/tex]
2. Convert the wavelength from nanometers to meters:
[tex]\[ \lambda_{\text{green}} = \frac{532 \text{ nm}}{1,000,000,000} = 532 \times 10^{-9} \text{ meters} = 5.32 \times 10^{-7} \text{ meters} \][/tex]
3. Calculate the frequency of the green laser light using the formula:
[tex]\[ v = \frac{c}{\lambda} \][/tex]
Substituting the values,
[tex]\[ v_{\text{green}} = \frac{300,000,000 \text{ m/s}}{5.32 \times 10^{-7} \text{ m}} \approx 563,909,774,436,090.1 \text{ Hz} \][/tex]
4. Determine the frequency of the material before doubling:
Given that the material emits light which is then doubled in frequency,
[tex]\[ v_{\text{before doubling}} = \frac{v_{\text{green}}}{2} = \frac{563,909,774,436,090.1 \text{ Hz}}{2} \approx 281,954,887,218,045.06 \text{ Hz} \][/tex]
5. Compare to the given options:
[tex]\[ \approx 2.8 \times 10^{14} \text{ Hz} \][/tex]
Therefore, the correct answer is:
B. [tex]\(2.8 \times 10^{14} \text{ Hz}\)[/tex]
1. Understand the given data and constants:
- Speed of light, [tex]\( c = 300,000,000 \text{ meters per second} \)[/tex]
- Wavelength of green laser light, [tex]\( \lambda = 532 \text{ nanometers} \)[/tex]
- Conversion factor, [tex]\( 1 \text{ meter} = 1,000,000,000 \text{ nanometers} \)[/tex]
2. Convert the wavelength from nanometers to meters:
[tex]\[ \lambda_{\text{green}} = \frac{532 \text{ nm}}{1,000,000,000} = 532 \times 10^{-9} \text{ meters} = 5.32 \times 10^{-7} \text{ meters} \][/tex]
3. Calculate the frequency of the green laser light using the formula:
[tex]\[ v = \frac{c}{\lambda} \][/tex]
Substituting the values,
[tex]\[ v_{\text{green}} = \frac{300,000,000 \text{ m/s}}{5.32 \times 10^{-7} \text{ m}} \approx 563,909,774,436,090.1 \text{ Hz} \][/tex]
4. Determine the frequency of the material before doubling:
Given that the material emits light which is then doubled in frequency,
[tex]\[ v_{\text{before doubling}} = \frac{v_{\text{green}}}{2} = \frac{563,909,774,436,090.1 \text{ Hz}}{2} \approx 281,954,887,218,045.06 \text{ Hz} \][/tex]
5. Compare to the given options:
[tex]\[ \approx 2.8 \times 10^{14} \text{ Hz} \][/tex]
Therefore, the correct answer is:
B. [tex]\(2.8 \times 10^{14} \text{ Hz}\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.