Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem, let's break it down step by step.
1. Understand the given data and constants:
- Speed of light, [tex]\( c = 300,000,000 \text{ meters per second} \)[/tex]
- Wavelength of green laser light, [tex]\( \lambda = 532 \text{ nanometers} \)[/tex]
- Conversion factor, [tex]\( 1 \text{ meter} = 1,000,000,000 \text{ nanometers} \)[/tex]
2. Convert the wavelength from nanometers to meters:
[tex]\[ \lambda_{\text{green}} = \frac{532 \text{ nm}}{1,000,000,000} = 532 \times 10^{-9} \text{ meters} = 5.32 \times 10^{-7} \text{ meters} \][/tex]
3. Calculate the frequency of the green laser light using the formula:
[tex]\[ v = \frac{c}{\lambda} \][/tex]
Substituting the values,
[tex]\[ v_{\text{green}} = \frac{300,000,000 \text{ m/s}}{5.32 \times 10^{-7} \text{ m}} \approx 563,909,774,436,090.1 \text{ Hz} \][/tex]
4. Determine the frequency of the material before doubling:
Given that the material emits light which is then doubled in frequency,
[tex]\[ v_{\text{before doubling}} = \frac{v_{\text{green}}}{2} = \frac{563,909,774,436,090.1 \text{ Hz}}{2} \approx 281,954,887,218,045.06 \text{ Hz} \][/tex]
5. Compare to the given options:
[tex]\[ \approx 2.8 \times 10^{14} \text{ Hz} \][/tex]
Therefore, the correct answer is:
B. [tex]\(2.8 \times 10^{14} \text{ Hz}\)[/tex]
1. Understand the given data and constants:
- Speed of light, [tex]\( c = 300,000,000 \text{ meters per second} \)[/tex]
- Wavelength of green laser light, [tex]\( \lambda = 532 \text{ nanometers} \)[/tex]
- Conversion factor, [tex]\( 1 \text{ meter} = 1,000,000,000 \text{ nanometers} \)[/tex]
2. Convert the wavelength from nanometers to meters:
[tex]\[ \lambda_{\text{green}} = \frac{532 \text{ nm}}{1,000,000,000} = 532 \times 10^{-9} \text{ meters} = 5.32 \times 10^{-7} \text{ meters} \][/tex]
3. Calculate the frequency of the green laser light using the formula:
[tex]\[ v = \frac{c}{\lambda} \][/tex]
Substituting the values,
[tex]\[ v_{\text{green}} = \frac{300,000,000 \text{ m/s}}{5.32 \times 10^{-7} \text{ m}} \approx 563,909,774,436,090.1 \text{ Hz} \][/tex]
4. Determine the frequency of the material before doubling:
Given that the material emits light which is then doubled in frequency,
[tex]\[ v_{\text{before doubling}} = \frac{v_{\text{green}}}{2} = \frac{563,909,774,436,090.1 \text{ Hz}}{2} \approx 281,954,887,218,045.06 \text{ Hz} \][/tex]
5. Compare to the given options:
[tex]\[ \approx 2.8 \times 10^{14} \text{ Hz} \][/tex]
Therefore, the correct answer is:
B. [tex]\(2.8 \times 10^{14} \text{ Hz}\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.