At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem, let's break it down step by step.
1. Understand the given data and constants:
- Speed of light, [tex]\( c = 300,000,000 \text{ meters per second} \)[/tex]
- Wavelength of green laser light, [tex]\( \lambda = 532 \text{ nanometers} \)[/tex]
- Conversion factor, [tex]\( 1 \text{ meter} = 1,000,000,000 \text{ nanometers} \)[/tex]
2. Convert the wavelength from nanometers to meters:
[tex]\[ \lambda_{\text{green}} = \frac{532 \text{ nm}}{1,000,000,000} = 532 \times 10^{-9} \text{ meters} = 5.32 \times 10^{-7} \text{ meters} \][/tex]
3. Calculate the frequency of the green laser light using the formula:
[tex]\[ v = \frac{c}{\lambda} \][/tex]
Substituting the values,
[tex]\[ v_{\text{green}} = \frac{300,000,000 \text{ m/s}}{5.32 \times 10^{-7} \text{ m}} \approx 563,909,774,436,090.1 \text{ Hz} \][/tex]
4. Determine the frequency of the material before doubling:
Given that the material emits light which is then doubled in frequency,
[tex]\[ v_{\text{before doubling}} = \frac{v_{\text{green}}}{2} = \frac{563,909,774,436,090.1 \text{ Hz}}{2} \approx 281,954,887,218,045.06 \text{ Hz} \][/tex]
5. Compare to the given options:
[tex]\[ \approx 2.8 \times 10^{14} \text{ Hz} \][/tex]
Therefore, the correct answer is:
B. [tex]\(2.8 \times 10^{14} \text{ Hz}\)[/tex]
1. Understand the given data and constants:
- Speed of light, [tex]\( c = 300,000,000 \text{ meters per second} \)[/tex]
- Wavelength of green laser light, [tex]\( \lambda = 532 \text{ nanometers} \)[/tex]
- Conversion factor, [tex]\( 1 \text{ meter} = 1,000,000,000 \text{ nanometers} \)[/tex]
2. Convert the wavelength from nanometers to meters:
[tex]\[ \lambda_{\text{green}} = \frac{532 \text{ nm}}{1,000,000,000} = 532 \times 10^{-9} \text{ meters} = 5.32 \times 10^{-7} \text{ meters} \][/tex]
3. Calculate the frequency of the green laser light using the formula:
[tex]\[ v = \frac{c}{\lambda} \][/tex]
Substituting the values,
[tex]\[ v_{\text{green}} = \frac{300,000,000 \text{ m/s}}{5.32 \times 10^{-7} \text{ m}} \approx 563,909,774,436,090.1 \text{ Hz} \][/tex]
4. Determine the frequency of the material before doubling:
Given that the material emits light which is then doubled in frequency,
[tex]\[ v_{\text{before doubling}} = \frac{v_{\text{green}}}{2} = \frac{563,909,774,436,090.1 \text{ Hz}}{2} \approx 281,954,887,218,045.06 \text{ Hz} \][/tex]
5. Compare to the given options:
[tex]\[ \approx 2.8 \times 10^{14} \text{ Hz} \][/tex]
Therefore, the correct answer is:
B. [tex]\(2.8 \times 10^{14} \text{ Hz}\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.