Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To fully describe the translation from the function [tex]\( y = x^2 \)[/tex] to the function [tex]\( y = x^2 + 4 \)[/tex], we need to analyze how the graph of the function is shifted.
1. Original Function: The original function is [tex]\( y = x^2 \)[/tex]. This is a parabola with its vertex at the origin [tex]\((0, 0)\)[/tex].
2. Translated Function: The translated function is [tex]\( y = x^2 + 4 \)[/tex]. This is a parabola that has the same shape as the original, but it is shifted vertically.
3. Determining the Direction of Translation: The translation of a graph in the vertical direction is represented by adding or subtracting a constant to the original function. In this case, the term [tex]\( +4 \)[/tex] indicates that each point on the graph of [tex]\( y = x^2 \)[/tex] has been moved 4 units upward along the y-axis.
4. Translation Vector:
- A translation vector is expressed in the form [tex]\( (a, b) \)[/tex], where [tex]\( a \)[/tex] is the horizontal shift and [tex]\( b \)[/tex] is the vertical shift.
- Here, the graph has not shifted horizontally, so [tex]\( a = 0 \)[/tex].
- The vertical shift is 4 units upwards, so [tex]\( b = 4 \)[/tex].
5. Vector Form of the Translation: Combining these, the translation vector is given by [tex]\( (0, 4) \)[/tex].
Therefore, the translation from [tex]\( y = x^2 \)[/tex] to [tex]\( y = x^2 + 4 \)[/tex] is described by the vector [tex]\( (0, 4) \)[/tex].
1. Original Function: The original function is [tex]\( y = x^2 \)[/tex]. This is a parabola with its vertex at the origin [tex]\((0, 0)\)[/tex].
2. Translated Function: The translated function is [tex]\( y = x^2 + 4 \)[/tex]. This is a parabola that has the same shape as the original, but it is shifted vertically.
3. Determining the Direction of Translation: The translation of a graph in the vertical direction is represented by adding or subtracting a constant to the original function. In this case, the term [tex]\( +4 \)[/tex] indicates that each point on the graph of [tex]\( y = x^2 \)[/tex] has been moved 4 units upward along the y-axis.
4. Translation Vector:
- A translation vector is expressed in the form [tex]\( (a, b) \)[/tex], where [tex]\( a \)[/tex] is the horizontal shift and [tex]\( b \)[/tex] is the vertical shift.
- Here, the graph has not shifted horizontally, so [tex]\( a = 0 \)[/tex].
- The vertical shift is 4 units upwards, so [tex]\( b = 4 \)[/tex].
5. Vector Form of the Translation: Combining these, the translation vector is given by [tex]\( (0, 4) \)[/tex].
Therefore, the translation from [tex]\( y = x^2 \)[/tex] to [tex]\( y = x^2 + 4 \)[/tex] is described by the vector [tex]\( (0, 4) \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.