Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve each part of the problem step-by-step.
### Part 7.5) Find the vertex equation by completing the square.
The given quadratic equation is:
[tex]\[ y = 3x^2 - 12x + 6 \][/tex]
To find the vertex, we will complete the square for this equation.
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ y = 3(x^2 - 4x) + 6 \][/tex]
2. Complete the square inside the parenthesis:
To complete the square, we need to add and subtract a term inside the parenthesis that makes the expression a perfect square trinomial. The term to add and subtract is [tex]\( \left(\frac{-4}{2}\right)^2 = 4 \)[/tex].
[tex]\[ y = 3(x^2 - 4x + 4 - 4) + 6 \][/tex]
[tex]\[ y = 3((x - 2)^2 - 4) + 6 \][/tex]
3. Simplify the equation:
Distribute the 3 and combine the constants:
[tex]\[ y = 3(x - 2)^2 - 12 + 6 \][/tex]
[tex]\[ y = 3(x - 2)^2 - 6 \][/tex]
The equation in vertex form is:
[tex]\[ y = 3(x - 2)^2 - 6 \][/tex]
From this, we identify the vertex [tex]\((h, k)\)[/tex]. The vertex form [tex]\( y = a(x - h)^2 + k \)[/tex] shows the vertex directly as the point [tex]\((h, k)\)[/tex].
So, the vertex of the parabola is:
[tex]\[ (h, k) = (2, -6) \][/tex]
Given the choices, the correct vertex is:
[tex]\[ (2, -6) \][/tex]
### Part 8) Subtract the complex numbers.
The given complex numbers are:
[tex]\[ z_1 = 3 - 2i \][/tex]
[tex]\[ z_2 = 7 + 6i \][/tex]
To find the result of subtracting [tex]\( z_2 \)[/tex] from [tex]\( z_1 \)[/tex]:
[tex]\[ (3 - 2i) - (7 + 6i) \][/tex]
Subtract the real parts and the imaginary parts separately:
Real part:
[tex]\[ 3 - 7 = -4 \][/tex]
Imaginary part:
[tex]\[ -2i - 6i = -8i \][/tex]
Therefore, the result of the subtraction is:
[tex]\[ (3 - 2i) - (7 + 6i) = -4 - 8i \][/tex]
The result is:
[tex]\[ -4 - 8i \][/tex]
So, we have successfully solved both parts of the problem.
### Part 7.5) Find the vertex equation by completing the square.
The given quadratic equation is:
[tex]\[ y = 3x^2 - 12x + 6 \][/tex]
To find the vertex, we will complete the square for this equation.
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ y = 3(x^2 - 4x) + 6 \][/tex]
2. Complete the square inside the parenthesis:
To complete the square, we need to add and subtract a term inside the parenthesis that makes the expression a perfect square trinomial. The term to add and subtract is [tex]\( \left(\frac{-4}{2}\right)^2 = 4 \)[/tex].
[tex]\[ y = 3(x^2 - 4x + 4 - 4) + 6 \][/tex]
[tex]\[ y = 3((x - 2)^2 - 4) + 6 \][/tex]
3. Simplify the equation:
Distribute the 3 and combine the constants:
[tex]\[ y = 3(x - 2)^2 - 12 + 6 \][/tex]
[tex]\[ y = 3(x - 2)^2 - 6 \][/tex]
The equation in vertex form is:
[tex]\[ y = 3(x - 2)^2 - 6 \][/tex]
From this, we identify the vertex [tex]\((h, k)\)[/tex]. The vertex form [tex]\( y = a(x - h)^2 + k \)[/tex] shows the vertex directly as the point [tex]\((h, k)\)[/tex].
So, the vertex of the parabola is:
[tex]\[ (h, k) = (2, -6) \][/tex]
Given the choices, the correct vertex is:
[tex]\[ (2, -6) \][/tex]
### Part 8) Subtract the complex numbers.
The given complex numbers are:
[tex]\[ z_1 = 3 - 2i \][/tex]
[tex]\[ z_2 = 7 + 6i \][/tex]
To find the result of subtracting [tex]\( z_2 \)[/tex] from [tex]\( z_1 \)[/tex]:
[tex]\[ (3 - 2i) - (7 + 6i) \][/tex]
Subtract the real parts and the imaginary parts separately:
Real part:
[tex]\[ 3 - 7 = -4 \][/tex]
Imaginary part:
[tex]\[ -2i - 6i = -8i \][/tex]
Therefore, the result of the subtraction is:
[tex]\[ (3 - 2i) - (7 + 6i) = -4 - 8i \][/tex]
The result is:
[tex]\[ -4 - 8i \][/tex]
So, we have successfully solved both parts of the problem.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.