Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve each part of the problem step-by-step.
### Part 7.5) Find the vertex equation by completing the square.
The given quadratic equation is:
[tex]\[ y = 3x^2 - 12x + 6 \][/tex]
To find the vertex, we will complete the square for this equation.
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ y = 3(x^2 - 4x) + 6 \][/tex]
2. Complete the square inside the parenthesis:
To complete the square, we need to add and subtract a term inside the parenthesis that makes the expression a perfect square trinomial. The term to add and subtract is [tex]\( \left(\frac{-4}{2}\right)^2 = 4 \)[/tex].
[tex]\[ y = 3(x^2 - 4x + 4 - 4) + 6 \][/tex]
[tex]\[ y = 3((x - 2)^2 - 4) + 6 \][/tex]
3. Simplify the equation:
Distribute the 3 and combine the constants:
[tex]\[ y = 3(x - 2)^2 - 12 + 6 \][/tex]
[tex]\[ y = 3(x - 2)^2 - 6 \][/tex]
The equation in vertex form is:
[tex]\[ y = 3(x - 2)^2 - 6 \][/tex]
From this, we identify the vertex [tex]\((h, k)\)[/tex]. The vertex form [tex]\( y = a(x - h)^2 + k \)[/tex] shows the vertex directly as the point [tex]\((h, k)\)[/tex].
So, the vertex of the parabola is:
[tex]\[ (h, k) = (2, -6) \][/tex]
Given the choices, the correct vertex is:
[tex]\[ (2, -6) \][/tex]
### Part 8) Subtract the complex numbers.
The given complex numbers are:
[tex]\[ z_1 = 3 - 2i \][/tex]
[tex]\[ z_2 = 7 + 6i \][/tex]
To find the result of subtracting [tex]\( z_2 \)[/tex] from [tex]\( z_1 \)[/tex]:
[tex]\[ (3 - 2i) - (7 + 6i) \][/tex]
Subtract the real parts and the imaginary parts separately:
Real part:
[tex]\[ 3 - 7 = -4 \][/tex]
Imaginary part:
[tex]\[ -2i - 6i = -8i \][/tex]
Therefore, the result of the subtraction is:
[tex]\[ (3 - 2i) - (7 + 6i) = -4 - 8i \][/tex]
The result is:
[tex]\[ -4 - 8i \][/tex]
So, we have successfully solved both parts of the problem.
### Part 7.5) Find the vertex equation by completing the square.
The given quadratic equation is:
[tex]\[ y = 3x^2 - 12x + 6 \][/tex]
To find the vertex, we will complete the square for this equation.
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ y = 3(x^2 - 4x) + 6 \][/tex]
2. Complete the square inside the parenthesis:
To complete the square, we need to add and subtract a term inside the parenthesis that makes the expression a perfect square trinomial. The term to add and subtract is [tex]\( \left(\frac{-4}{2}\right)^2 = 4 \)[/tex].
[tex]\[ y = 3(x^2 - 4x + 4 - 4) + 6 \][/tex]
[tex]\[ y = 3((x - 2)^2 - 4) + 6 \][/tex]
3. Simplify the equation:
Distribute the 3 and combine the constants:
[tex]\[ y = 3(x - 2)^2 - 12 + 6 \][/tex]
[tex]\[ y = 3(x - 2)^2 - 6 \][/tex]
The equation in vertex form is:
[tex]\[ y = 3(x - 2)^2 - 6 \][/tex]
From this, we identify the vertex [tex]\((h, k)\)[/tex]. The vertex form [tex]\( y = a(x - h)^2 + k \)[/tex] shows the vertex directly as the point [tex]\((h, k)\)[/tex].
So, the vertex of the parabola is:
[tex]\[ (h, k) = (2, -6) \][/tex]
Given the choices, the correct vertex is:
[tex]\[ (2, -6) \][/tex]
### Part 8) Subtract the complex numbers.
The given complex numbers are:
[tex]\[ z_1 = 3 - 2i \][/tex]
[tex]\[ z_2 = 7 + 6i \][/tex]
To find the result of subtracting [tex]\( z_2 \)[/tex] from [tex]\( z_1 \)[/tex]:
[tex]\[ (3 - 2i) - (7 + 6i) \][/tex]
Subtract the real parts and the imaginary parts separately:
Real part:
[tex]\[ 3 - 7 = -4 \][/tex]
Imaginary part:
[tex]\[ -2i - 6i = -8i \][/tex]
Therefore, the result of the subtraction is:
[tex]\[ (3 - 2i) - (7 + 6i) = -4 - 8i \][/tex]
The result is:
[tex]\[ -4 - 8i \][/tex]
So, we have successfully solved both parts of the problem.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.