At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the completely factored form of the expression [tex][tex]$16x^2 + 8x + 32?$[/tex][/tex]

A. [tex]4\left(4x^2 + 2x + 8\right)[/tex]
B. [tex]4\left(12x^2 + 4x + 28\right)[/tex]
C. [tex]8\left(2x^2 + x + 4\right)[/tex]
D. [tex]8x\left(8x^2 + x + 24\right)[/tex]


Sagot :

To find the completely factored form of the expression [tex]\(16x^2 + 8x + 32\)[/tex], we should look for common factors and try to simplify the expression step-by-step.

1. Identify common factors among the coefficients of the terms in the expression:

[tex]\[ 16x^2 + 8x + 32 \][/tex]

Notice that each term in the expression has a common factor of 8.

2. Factor out the greatest common factor (GCF), which is 8, from each term:

[tex]\[ 16x^2 + 8x + 32 = 8(2x^2 + x + 4) \][/tex]

3. After factoring out the 8, look at the expression inside the parentheses:

[tex]\[ 2x^2 + x + 4 \][/tex]

Check if this quadratic trinomial can be factored further. In this case, [tex]\(2x^2 + x + 4\)[/tex] does not factor any further as a product of simpler linear binomials.

Thus, the completely factored form of the expression [tex]\(16x^2 + 8x + 32\)[/tex] is:

[tex]\[ 8(2x^2 + x + 4) \][/tex]

Among the given choices, the correct answer is:

[tex]\[ 8(2x^2 + x + 4) \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.