Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine Mimi's monthly repayment for the business loan, we will use the formula for calculating annuity payments, specifically the formula for monthly repayments on an installment loan. The formula is:
[tex]\[ M = P \cdot \frac{r(1+r)^n}{(1+r)^n - 1} \][/tex]
Where:
- [tex]\( M \)[/tex] is the monthly repayment.
- [tex]\( P \)[/tex] is the loan amount.
- [tex]\( r \)[/tex] is the monthly interest rate.
- [tex]\( n \)[/tex] is the total number of monthly payments.
Given:
- [tex]\( P = \$12,000 \)[/tex]
- The annual interest rate is [tex]\( 5\% \)[/tex], or [tex]\( 0.05 \)[/tex].
- The repayment period is [tex]\( 2 \)[/tex] years.
First, we need to convert the annual interest rate to a monthly interest rate:
[tex]\[ r = \frac{0.05}{12} = 0.004167 \][/tex]
Next, we calculate the total number of monthly payments over the 2 years:
[tex]\[ n = 2 \times 12 = 24 \][/tex]
Now we can plug these values into the formula:
1. Calculate [tex]\( (1 + r)^n \)[/tex]:
[tex]\[ (1 + 0.004167)^{24} = 1.10494 \][/tex]
2. Calculate the numerator [tex]\( r \cdot (1 + r)^n \)[/tex]:
[tex]\[ 0.004167 \cdot 1.10494 = 0.004604 \][/tex]
3. Calculate the denominator [tex]\( (1 + r)^n - 1 \)[/tex]:
[tex]\[ 1.10494 - 1 = 0.104941 \][/tex]
4. Finally, calculate the monthly repayment [tex]\( M \)[/tex]:
[tex]\[ M = 12000 \cdot \frac{0.004604}{0.104941} = 12000 \cdot 0.043871 \approx 526.4567 \][/tex]
Therefore, Mimi's monthly repayment is approximately \$526.46.
[tex]\[ M = P \cdot \frac{r(1+r)^n}{(1+r)^n - 1} \][/tex]
Where:
- [tex]\( M \)[/tex] is the monthly repayment.
- [tex]\( P \)[/tex] is the loan amount.
- [tex]\( r \)[/tex] is the monthly interest rate.
- [tex]\( n \)[/tex] is the total number of monthly payments.
Given:
- [tex]\( P = \$12,000 \)[/tex]
- The annual interest rate is [tex]\( 5\% \)[/tex], or [tex]\( 0.05 \)[/tex].
- The repayment period is [tex]\( 2 \)[/tex] years.
First, we need to convert the annual interest rate to a monthly interest rate:
[tex]\[ r = \frac{0.05}{12} = 0.004167 \][/tex]
Next, we calculate the total number of monthly payments over the 2 years:
[tex]\[ n = 2 \times 12 = 24 \][/tex]
Now we can plug these values into the formula:
1. Calculate [tex]\( (1 + r)^n \)[/tex]:
[tex]\[ (1 + 0.004167)^{24} = 1.10494 \][/tex]
2. Calculate the numerator [tex]\( r \cdot (1 + r)^n \)[/tex]:
[tex]\[ 0.004167 \cdot 1.10494 = 0.004604 \][/tex]
3. Calculate the denominator [tex]\( (1 + r)^n - 1 \)[/tex]:
[tex]\[ 1.10494 - 1 = 0.104941 \][/tex]
4. Finally, calculate the monthly repayment [tex]\( M \)[/tex]:
[tex]\[ M = 12000 \cdot \frac{0.004604}{0.104941} = 12000 \cdot 0.043871 \approx 526.4567 \][/tex]
Therefore, Mimi's monthly repayment is approximately \$526.46.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.