Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Mimi has a business loan of [tex]\[tex]$12{,}000[/tex] from a bank with an annual interest rate of [tex]5\%[/tex]. The loan is to be repaid over 2 years.

What is Mimi's monthly repayment?

A. [tex]\$[/tex]12{,}000 \cdot \frac{0.05(1.05)^{24}}{(1.05)^{24}-1} = \[tex]$12{,}000 \cdot \frac{0.1613}{2.2251} = \$[/tex]869.89[/tex]

B. [tex]\[tex]$12{,}000 \cdot \frac{\frac{0.05}{12}\left(1+\frac{0.05}{12}\right)^{24}}{\left(1+\frac{0.05}{12}\right)^{24}-1} = \$[/tex]12{,}000 \cdot \frac{0.0042(1.0042)^{24}}{(1.0042)^{24}-1} = \frac{\[tex]$55.733}{0.1058} = \$[/tex]526.78[/tex]

C. [tex]\[tex]$12{,}000 \cdot 0.05 \cdot \frac{1}{24} = \$[/tex]25.00[/tex]

D. [tex]\[tex]$12{,}000 \cdot 0.05 \cdot 2 = \$[/tex]1{,}200.00[/tex]


Sagot :

To determine Mimi's monthly repayment for the business loan, we will use the formula for calculating annuity payments, specifically the formula for monthly repayments on an installment loan. The formula is:

[tex]\[ M = P \cdot \frac{r(1+r)^n}{(1+r)^n - 1} \][/tex]

Where:
- [tex]\( M \)[/tex] is the monthly repayment.
- [tex]\( P \)[/tex] is the loan amount.
- [tex]\( r \)[/tex] is the monthly interest rate.
- [tex]\( n \)[/tex] is the total number of monthly payments.

Given:
- [tex]\( P = \$12,000 \)[/tex]
- The annual interest rate is [tex]\( 5\% \)[/tex], or [tex]\( 0.05 \)[/tex].
- The repayment period is [tex]\( 2 \)[/tex] years.

First, we need to convert the annual interest rate to a monthly interest rate:
[tex]\[ r = \frac{0.05}{12} = 0.004167 \][/tex]

Next, we calculate the total number of monthly payments over the 2 years:
[tex]\[ n = 2 \times 12 = 24 \][/tex]

Now we can plug these values into the formula:

1. Calculate [tex]\( (1 + r)^n \)[/tex]:
[tex]\[ (1 + 0.004167)^{24} = 1.10494 \][/tex]

2. Calculate the numerator [tex]\( r \cdot (1 + r)^n \)[/tex]:
[tex]\[ 0.004167 \cdot 1.10494 = 0.004604 \][/tex]

3. Calculate the denominator [tex]\( (1 + r)^n - 1 \)[/tex]:
[tex]\[ 1.10494 - 1 = 0.104941 \][/tex]

4. Finally, calculate the monthly repayment [tex]\( M \)[/tex]:
[tex]\[ M = 12000 \cdot \frac{0.004604}{0.104941} = 12000 \cdot 0.043871 \approx 526.4567 \][/tex]

Therefore, Mimi's monthly repayment is approximately \$526.46.