Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine Mimi's monthly repayment for the business loan, we will use the formula for calculating annuity payments, specifically the formula for monthly repayments on an installment loan. The formula is:
[tex]\[ M = P \cdot \frac{r(1+r)^n}{(1+r)^n - 1} \][/tex]
Where:
- [tex]\( M \)[/tex] is the monthly repayment.
- [tex]\( P \)[/tex] is the loan amount.
- [tex]\( r \)[/tex] is the monthly interest rate.
- [tex]\( n \)[/tex] is the total number of monthly payments.
Given:
- [tex]\( P = \$12,000 \)[/tex]
- The annual interest rate is [tex]\( 5\% \)[/tex], or [tex]\( 0.05 \)[/tex].
- The repayment period is [tex]\( 2 \)[/tex] years.
First, we need to convert the annual interest rate to a monthly interest rate:
[tex]\[ r = \frac{0.05}{12} = 0.004167 \][/tex]
Next, we calculate the total number of monthly payments over the 2 years:
[tex]\[ n = 2 \times 12 = 24 \][/tex]
Now we can plug these values into the formula:
1. Calculate [tex]\( (1 + r)^n \)[/tex]:
[tex]\[ (1 + 0.004167)^{24} = 1.10494 \][/tex]
2. Calculate the numerator [tex]\( r \cdot (1 + r)^n \)[/tex]:
[tex]\[ 0.004167 \cdot 1.10494 = 0.004604 \][/tex]
3. Calculate the denominator [tex]\( (1 + r)^n - 1 \)[/tex]:
[tex]\[ 1.10494 - 1 = 0.104941 \][/tex]
4. Finally, calculate the monthly repayment [tex]\( M \)[/tex]:
[tex]\[ M = 12000 \cdot \frac{0.004604}{0.104941} = 12000 \cdot 0.043871 \approx 526.4567 \][/tex]
Therefore, Mimi's monthly repayment is approximately \$526.46.
[tex]\[ M = P \cdot \frac{r(1+r)^n}{(1+r)^n - 1} \][/tex]
Where:
- [tex]\( M \)[/tex] is the monthly repayment.
- [tex]\( P \)[/tex] is the loan amount.
- [tex]\( r \)[/tex] is the monthly interest rate.
- [tex]\( n \)[/tex] is the total number of monthly payments.
Given:
- [tex]\( P = \$12,000 \)[/tex]
- The annual interest rate is [tex]\( 5\% \)[/tex], or [tex]\( 0.05 \)[/tex].
- The repayment period is [tex]\( 2 \)[/tex] years.
First, we need to convert the annual interest rate to a monthly interest rate:
[tex]\[ r = \frac{0.05}{12} = 0.004167 \][/tex]
Next, we calculate the total number of monthly payments over the 2 years:
[tex]\[ n = 2 \times 12 = 24 \][/tex]
Now we can plug these values into the formula:
1. Calculate [tex]\( (1 + r)^n \)[/tex]:
[tex]\[ (1 + 0.004167)^{24} = 1.10494 \][/tex]
2. Calculate the numerator [tex]\( r \cdot (1 + r)^n \)[/tex]:
[tex]\[ 0.004167 \cdot 1.10494 = 0.004604 \][/tex]
3. Calculate the denominator [tex]\( (1 + r)^n - 1 \)[/tex]:
[tex]\[ 1.10494 - 1 = 0.104941 \][/tex]
4. Finally, calculate the monthly repayment [tex]\( M \)[/tex]:
[tex]\[ M = 12000 \cdot \frac{0.004604}{0.104941} = 12000 \cdot 0.043871 \approx 526.4567 \][/tex]
Therefore, Mimi's monthly repayment is approximately \$526.46.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.