Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's break down the problem step by step:
### Part (a): How many people are male OR study Biology OR both?
To find the number of people who are either male, or study Biology, or both, we need to use the principle of inclusion and exclusion. This principle helps to ensure that we don't double-count the people who are both male and study Biology.
1. Number of males (A):
[tex]\[ A = 42 \][/tex]
2. Number of people who study Biology (B):
[tex]\[ B = 34 \][/tex]
3. Number of males who study Biology (A ∩ B):
[tex]\[ A ∩ B = 14 \][/tex]
Using the principle of inclusion and exclusion:
[tex]\[ A \cup B = A + B - A ∩ B \][/tex]
Plugging in the values:
[tex]\[ A \cup B = 42 + 34 - 14 = 62 \][/tex]
So, the number of people who are male OR study Biology OR both is:
[tex]\[ 62 \][/tex]
### Part (b): What is the probability that any person is male OR studies Biology OR both?
The probability of an event is given by the number of favorable outcomes divided by the total number of possible outcomes.
1. Number of favorable outcomes (people who are male OR study Biology OR both):
[tex]\[ \text{Favorable outcomes} = 62 \][/tex]
2. Total number of possible outcomes (total number of people):
[tex]\[ \text{Total outcomes} = 90 \][/tex]
The probability (P) is given by:
[tex]\[ P = \frac{\text{Favorable outcomes}}{\text{Total outcomes}} = \frac{62}{90} \][/tex]
Simplifying the fraction:
[tex]\[ P = \frac{62}{90} \approx 0.6889 \text{ (rounded to 4 decimal places)} \][/tex]
Therefore, the probability that any person is male OR studies Biology OR both is approximately:
[tex]\[ 0.6889 \text{ or } 68.89\% \][/tex]
In summary:
- (a) The number of people who are male OR study Biology OR both is [tex]\(62\)[/tex].
- (b) The probability that any person is male OR studies Biology OR both is [tex]\( \approx 0.6889 \)[/tex] or [tex]\( 68.89\% \)[/tex].
### Part (a): How many people are male OR study Biology OR both?
To find the number of people who are either male, or study Biology, or both, we need to use the principle of inclusion and exclusion. This principle helps to ensure that we don't double-count the people who are both male and study Biology.
1. Number of males (A):
[tex]\[ A = 42 \][/tex]
2. Number of people who study Biology (B):
[tex]\[ B = 34 \][/tex]
3. Number of males who study Biology (A ∩ B):
[tex]\[ A ∩ B = 14 \][/tex]
Using the principle of inclusion and exclusion:
[tex]\[ A \cup B = A + B - A ∩ B \][/tex]
Plugging in the values:
[tex]\[ A \cup B = 42 + 34 - 14 = 62 \][/tex]
So, the number of people who are male OR study Biology OR both is:
[tex]\[ 62 \][/tex]
### Part (b): What is the probability that any person is male OR studies Biology OR both?
The probability of an event is given by the number of favorable outcomes divided by the total number of possible outcomes.
1. Number of favorable outcomes (people who are male OR study Biology OR both):
[tex]\[ \text{Favorable outcomes} = 62 \][/tex]
2. Total number of possible outcomes (total number of people):
[tex]\[ \text{Total outcomes} = 90 \][/tex]
The probability (P) is given by:
[tex]\[ P = \frac{\text{Favorable outcomes}}{\text{Total outcomes}} = \frac{62}{90} \][/tex]
Simplifying the fraction:
[tex]\[ P = \frac{62}{90} \approx 0.6889 \text{ (rounded to 4 decimal places)} \][/tex]
Therefore, the probability that any person is male OR studies Biology OR both is approximately:
[tex]\[ 0.6889 \text{ or } 68.89\% \][/tex]
In summary:
- (a) The number of people who are male OR study Biology OR both is [tex]\(62\)[/tex].
- (b) The probability that any person is male OR studies Biology OR both is [tex]\( \approx 0.6889 \)[/tex] or [tex]\( 68.89\% \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.