Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the values of [tex]\( x \)[/tex] for which the function [tex]\( f(x) = -5|x+1| + 3 \)[/tex] equals [tex]\(-12\)[/tex], we'll follow a systematic approach:
1. Set the function equal to [tex]\(-12\)[/tex]:
[tex]\[ -5|x+1| + 3 = -12 \][/tex]
2. Isolate the absolute value term:
First, move the constant term 3 to the other side by subtracting 3 from both sides:
[tex]\[ -5|x+1| = -12 - 3 \][/tex]
[tex]\[ -5|x+1| = -15 \][/tex]
3. Divide both sides by -5 to solve for [tex]\( |x+1| \)[/tex]:
[tex]\[ |x+1| = \frac{-15}{-5} \][/tex]
[tex]\[ |x+1| = 3 \][/tex]
4. Solve the absolute value equation:
The absolute value equation [tex]\( |x+1| = 3 \)[/tex] implies two cases:
- Case 1: [tex]\( x+1 = 3 \)[/tex]
- Case 2: [tex]\( x+1 = -3 \)[/tex]
5. Solve each case separately:
- For [tex]\( x+1 = 3 \)[/tex]:
[tex]\[ x = 3 - 1 \][/tex]
[tex]\[ x = 2 \][/tex]
- For [tex]\( x+1 = -3 \)[/tex]:
[tex]\[ x = -3 - 1 \][/tex]
[tex]\[ x = -4 \][/tex]
Hence, the values of [tex]\( x \)[/tex] that satisfy [tex]\( f(x) = -12 \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -4 \)[/tex].
Therefore, the correct answer is:
[tex]\[ x = 2, x = -4 \][/tex]
So, the correct option from the given choices is:
[tex]\[ x = 2, x = -4 \][/tex]
1. Set the function equal to [tex]\(-12\)[/tex]:
[tex]\[ -5|x+1| + 3 = -12 \][/tex]
2. Isolate the absolute value term:
First, move the constant term 3 to the other side by subtracting 3 from both sides:
[tex]\[ -5|x+1| = -12 - 3 \][/tex]
[tex]\[ -5|x+1| = -15 \][/tex]
3. Divide both sides by -5 to solve for [tex]\( |x+1| \)[/tex]:
[tex]\[ |x+1| = \frac{-15}{-5} \][/tex]
[tex]\[ |x+1| = 3 \][/tex]
4. Solve the absolute value equation:
The absolute value equation [tex]\( |x+1| = 3 \)[/tex] implies two cases:
- Case 1: [tex]\( x+1 = 3 \)[/tex]
- Case 2: [tex]\( x+1 = -3 \)[/tex]
5. Solve each case separately:
- For [tex]\( x+1 = 3 \)[/tex]:
[tex]\[ x = 3 - 1 \][/tex]
[tex]\[ x = 2 \][/tex]
- For [tex]\( x+1 = -3 \)[/tex]:
[tex]\[ x = -3 - 1 \][/tex]
[tex]\[ x = -4 \][/tex]
Hence, the values of [tex]\( x \)[/tex] that satisfy [tex]\( f(x) = -12 \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -4 \)[/tex].
Therefore, the correct answer is:
[tex]\[ x = 2, x = -4 \][/tex]
So, the correct option from the given choices is:
[tex]\[ x = 2, x = -4 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.