Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the extreme value of the given quadratic equation [tex]\( y = -3x^2 + 12x - 33 \)[/tex], we need to find the vertex of the parabola described by the equation.
A quadratic equation in the form [tex]\( y = ax^2 + bx + c \)[/tex] has its vertex at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients of [tex]\( x^2 \)[/tex] and [tex]\( x \)[/tex] terms respectively.
For the equation [tex]\( y = -3x^2 + 12x - 33 \)[/tex]:
- The coefficient [tex]\( a = -3 \)[/tex]
- The coefficient [tex]\( b = 12 \)[/tex]
Substitute these values into the vertex formula to find the x-coordinate of the vertex:
[tex]\[ x = -\frac{12}{2(-3)} = -\frac{12}{-6} = 2 \][/tex]
Next, we substitute this x-coordinate back into the quadratic equation to find the y-coordinate of the vertex:
[tex]\[ y = -3(2)^2 + 12(2) - 33 \][/tex]
[tex]\[ y = -3(4) + 24 - 33 \][/tex]
[tex]\[ y = -12 + 24 - 33 \][/tex]
[tex]\[ y = 12 - 33 \][/tex]
[tex]\[ y = -21 \][/tex]
The y-coordinate of the vertex is [tex]\(-21\)[/tex], and since the coefficient of [tex]\( x^2 \)[/tex] ([tex]\( a \)[/tex]) is negative ([tex]\( a = -3 \)[/tex]), the parabola opens downwards. Thus, the vertex represents a maximum value of the function.
Therefore, the correct statement is:
C. The equation has a maximum value with a [tex]\( y \)[/tex]-coordinate of -21.
A quadratic equation in the form [tex]\( y = ax^2 + bx + c \)[/tex] has its vertex at:
[tex]\[ x = -\frac{b}{2a} \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the coefficients of [tex]\( x^2 \)[/tex] and [tex]\( x \)[/tex] terms respectively.
For the equation [tex]\( y = -3x^2 + 12x - 33 \)[/tex]:
- The coefficient [tex]\( a = -3 \)[/tex]
- The coefficient [tex]\( b = 12 \)[/tex]
Substitute these values into the vertex formula to find the x-coordinate of the vertex:
[tex]\[ x = -\frac{12}{2(-3)} = -\frac{12}{-6} = 2 \][/tex]
Next, we substitute this x-coordinate back into the quadratic equation to find the y-coordinate of the vertex:
[tex]\[ y = -3(2)^2 + 12(2) - 33 \][/tex]
[tex]\[ y = -3(4) + 24 - 33 \][/tex]
[tex]\[ y = -12 + 24 - 33 \][/tex]
[tex]\[ y = 12 - 33 \][/tex]
[tex]\[ y = -21 \][/tex]
The y-coordinate of the vertex is [tex]\(-21\)[/tex], and since the coefficient of [tex]\( x^2 \)[/tex] ([tex]\( a \)[/tex]) is negative ([tex]\( a = -3 \)[/tex]), the parabola opens downwards. Thus, the vertex represents a maximum value of the function.
Therefore, the correct statement is:
C. The equation has a maximum value with a [tex]\( y \)[/tex]-coordinate of -21.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.