Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Simplify [tex][tex]$\sqrt{-50}$[/tex][/tex].

A. [tex][tex]$5 \sqrt{2}$[/tex][/tex]
B. [tex][tex]$5 i \sqrt{2}$[/tex][/tex]
C. [tex][tex]$-5 \sqrt{2}$[/tex][/tex]
D. [tex][tex]$-5 i \sqrt{2}$[/tex][/tex]


Sagot :

To simplify [tex]\(\sqrt{-50}\)[/tex], follow these steps:

1. Recognize that the square root of a negative number involves the imaginary unit [tex]\(i\)[/tex]. Specifically, [tex]\(\sqrt{-1}\)[/tex] is represented as [tex]\(i\)[/tex].

2. Rewrite the expression [tex]\(\sqrt{-50}\)[/tex] as [tex]\(\sqrt{-1 \times 50}\)[/tex].

3. Using the property of square roots, we can separate this into two square roots: [tex]\(\sqrt{-1} \times \sqrt{50}\)[/tex].

4. Recall that [tex]\(\sqrt{-1} = i\)[/tex]. So, the expression now becomes [tex]\(i \times \sqrt{50}\)[/tex].

5. Next, break down [tex]\(\sqrt{50}\)[/tex]:
[tex]\[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} \][/tex]

6. Since [tex]\(\sqrt{25} = 5\)[/tex], substitute this value in:
[tex]\[ \sqrt{50} = 5 \times \sqrt{2} \][/tex]

7. Substitute [tex]\(\sqrt{50}\)[/tex] back into the expression:
[tex]\[ i \times \sqrt{50} = i \times 5 \times \sqrt{2} = 5i\sqrt{2} \][/tex]

So, the simplified form of [tex]\(\sqrt{-50}\)[/tex] is:
[tex]\[ 5i\sqrt{2} \][/tex]

Therefore, the correct choice is:
[tex]\(\boxed{5 i \sqrt{2}}\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.