Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, we'll break it down into a few steps using the principles of kinematics.
1. Determine the time taken to reach the maximum height:
- We start by calculating the time taken for the stone to reach its maximum height where the velocity will be 0.
- The initial upward velocity ([tex]\(u\)[/tex]) is 45 m/s and the acceleration due to gravity ([tex]\(g\)[/tex]) is 10 m/s² (downward).
- At the maximum height, the final velocity ([tex]\(v\)[/tex]) is 0 m/s.
- Using the equation [tex]\(v = u - gt\)[/tex]:
[tex]\[ 0 = 45 - 10t \][/tex]
- Solving for [tex]\(t\)[/tex]:
[tex]\[ t = \frac{45}{10} = 4.5 \text{ seconds} \][/tex]
2. Calculate the maximum height reached above the tower:
- Next, we'll find the distance traveled upwards until the stone reaches this maximum height.
- Using the second equation of motion [tex]\( s = ut - \frac{1}{2}gt^2 \)[/tex]:
[tex]\[ s = 45 \cdot 4.5 - 0.5 \cdot 10 \cdot (4.5)^2 \][/tex]
- Substituting the values:
[tex]\[ s = 202.5 - 0.5 \cdot 10 \cdot 20.25 \][/tex]
[tex]\[ s = 202.5 - 101.25 = 101.25 \text{ meters} \][/tex]
3. Determine the time taken to fall back to the ground from the maximum height:
- The total time of flight is 10 seconds.
- Hence, time taken to descend from the maximum height back to the ground is the total time minus the ascent time:
[tex]\[ \text{Time to descend} = 10 - 4.5 = 5.5 \text{ seconds} \][/tex]
4. Calculate the distance fallen during the descent:
- To find the distance fallen from the maximum height back to the ground, we use the equation of motion for the descent:
[tex]\[ \text{Distance} = \frac{1}{2}gt^2 \][/tex]
- Substituting [tex]\( t = 5.5 \text{ seconds} \)[/tex] and [tex]\( g = 10 \text{ m/s}^2 \)[/tex]:
[tex]\[ \text{Distance} = 0.5 \cdot 10 \cdot (5.5)^2 = 5 \cdot 30.25 = 151.25 \text{ meters} \][/tex]
5. Calculate the total height of the tower:
- The total height of the tower is the sum of the distance during ascent and the distance during descent.
[tex]\[ \text{Total height} = 101.25 + 151.25 = 252.5 \text{ meters} \][/tex]
Thus, the height of the tower is [tex]\( 252.5 \)[/tex] meters.
1. Determine the time taken to reach the maximum height:
- We start by calculating the time taken for the stone to reach its maximum height where the velocity will be 0.
- The initial upward velocity ([tex]\(u\)[/tex]) is 45 m/s and the acceleration due to gravity ([tex]\(g\)[/tex]) is 10 m/s² (downward).
- At the maximum height, the final velocity ([tex]\(v\)[/tex]) is 0 m/s.
- Using the equation [tex]\(v = u - gt\)[/tex]:
[tex]\[ 0 = 45 - 10t \][/tex]
- Solving for [tex]\(t\)[/tex]:
[tex]\[ t = \frac{45}{10} = 4.5 \text{ seconds} \][/tex]
2. Calculate the maximum height reached above the tower:
- Next, we'll find the distance traveled upwards until the stone reaches this maximum height.
- Using the second equation of motion [tex]\( s = ut - \frac{1}{2}gt^2 \)[/tex]:
[tex]\[ s = 45 \cdot 4.5 - 0.5 \cdot 10 \cdot (4.5)^2 \][/tex]
- Substituting the values:
[tex]\[ s = 202.5 - 0.5 \cdot 10 \cdot 20.25 \][/tex]
[tex]\[ s = 202.5 - 101.25 = 101.25 \text{ meters} \][/tex]
3. Determine the time taken to fall back to the ground from the maximum height:
- The total time of flight is 10 seconds.
- Hence, time taken to descend from the maximum height back to the ground is the total time minus the ascent time:
[tex]\[ \text{Time to descend} = 10 - 4.5 = 5.5 \text{ seconds} \][/tex]
4. Calculate the distance fallen during the descent:
- To find the distance fallen from the maximum height back to the ground, we use the equation of motion for the descent:
[tex]\[ \text{Distance} = \frac{1}{2}gt^2 \][/tex]
- Substituting [tex]\( t = 5.5 \text{ seconds} \)[/tex] and [tex]\( g = 10 \text{ m/s}^2 \)[/tex]:
[tex]\[ \text{Distance} = 0.5 \cdot 10 \cdot (5.5)^2 = 5 \cdot 30.25 = 151.25 \text{ meters} \][/tex]
5. Calculate the total height of the tower:
- The total height of the tower is the sum of the distance during ascent and the distance during descent.
[tex]\[ \text{Total height} = 101.25 + 151.25 = 252.5 \text{ meters} \][/tex]
Thus, the height of the tower is [tex]\( 252.5 \)[/tex] meters.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.