Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we'll break it down into a few steps using the principles of kinematics.
1. Determine the time taken to reach the maximum height:
- We start by calculating the time taken for the stone to reach its maximum height where the velocity will be 0.
- The initial upward velocity ([tex]\(u\)[/tex]) is 45 m/s and the acceleration due to gravity ([tex]\(g\)[/tex]) is 10 m/s² (downward).
- At the maximum height, the final velocity ([tex]\(v\)[/tex]) is 0 m/s.
- Using the equation [tex]\(v = u - gt\)[/tex]:
[tex]\[ 0 = 45 - 10t \][/tex]
- Solving for [tex]\(t\)[/tex]:
[tex]\[ t = \frac{45}{10} = 4.5 \text{ seconds} \][/tex]
2. Calculate the maximum height reached above the tower:
- Next, we'll find the distance traveled upwards until the stone reaches this maximum height.
- Using the second equation of motion [tex]\( s = ut - \frac{1}{2}gt^2 \)[/tex]:
[tex]\[ s = 45 \cdot 4.5 - 0.5 \cdot 10 \cdot (4.5)^2 \][/tex]
- Substituting the values:
[tex]\[ s = 202.5 - 0.5 \cdot 10 \cdot 20.25 \][/tex]
[tex]\[ s = 202.5 - 101.25 = 101.25 \text{ meters} \][/tex]
3. Determine the time taken to fall back to the ground from the maximum height:
- The total time of flight is 10 seconds.
- Hence, time taken to descend from the maximum height back to the ground is the total time minus the ascent time:
[tex]\[ \text{Time to descend} = 10 - 4.5 = 5.5 \text{ seconds} \][/tex]
4. Calculate the distance fallen during the descent:
- To find the distance fallen from the maximum height back to the ground, we use the equation of motion for the descent:
[tex]\[ \text{Distance} = \frac{1}{2}gt^2 \][/tex]
- Substituting [tex]\( t = 5.5 \text{ seconds} \)[/tex] and [tex]\( g = 10 \text{ m/s}^2 \)[/tex]:
[tex]\[ \text{Distance} = 0.5 \cdot 10 \cdot (5.5)^2 = 5 \cdot 30.25 = 151.25 \text{ meters} \][/tex]
5. Calculate the total height of the tower:
- The total height of the tower is the sum of the distance during ascent and the distance during descent.
[tex]\[ \text{Total height} = 101.25 + 151.25 = 252.5 \text{ meters} \][/tex]
Thus, the height of the tower is [tex]\( 252.5 \)[/tex] meters.
1. Determine the time taken to reach the maximum height:
- We start by calculating the time taken for the stone to reach its maximum height where the velocity will be 0.
- The initial upward velocity ([tex]\(u\)[/tex]) is 45 m/s and the acceleration due to gravity ([tex]\(g\)[/tex]) is 10 m/s² (downward).
- At the maximum height, the final velocity ([tex]\(v\)[/tex]) is 0 m/s.
- Using the equation [tex]\(v = u - gt\)[/tex]:
[tex]\[ 0 = 45 - 10t \][/tex]
- Solving for [tex]\(t\)[/tex]:
[tex]\[ t = \frac{45}{10} = 4.5 \text{ seconds} \][/tex]
2. Calculate the maximum height reached above the tower:
- Next, we'll find the distance traveled upwards until the stone reaches this maximum height.
- Using the second equation of motion [tex]\( s = ut - \frac{1}{2}gt^2 \)[/tex]:
[tex]\[ s = 45 \cdot 4.5 - 0.5 \cdot 10 \cdot (4.5)^2 \][/tex]
- Substituting the values:
[tex]\[ s = 202.5 - 0.5 \cdot 10 \cdot 20.25 \][/tex]
[tex]\[ s = 202.5 - 101.25 = 101.25 \text{ meters} \][/tex]
3. Determine the time taken to fall back to the ground from the maximum height:
- The total time of flight is 10 seconds.
- Hence, time taken to descend from the maximum height back to the ground is the total time minus the ascent time:
[tex]\[ \text{Time to descend} = 10 - 4.5 = 5.5 \text{ seconds} \][/tex]
4. Calculate the distance fallen during the descent:
- To find the distance fallen from the maximum height back to the ground, we use the equation of motion for the descent:
[tex]\[ \text{Distance} = \frac{1}{2}gt^2 \][/tex]
- Substituting [tex]\( t = 5.5 \text{ seconds} \)[/tex] and [tex]\( g = 10 \text{ m/s}^2 \)[/tex]:
[tex]\[ \text{Distance} = 0.5 \cdot 10 \cdot (5.5)^2 = 5 \cdot 30.25 = 151.25 \text{ meters} \][/tex]
5. Calculate the total height of the tower:
- The total height of the tower is the sum of the distance during ascent and the distance during descent.
[tex]\[ \text{Total height} = 101.25 + 151.25 = 252.5 \text{ meters} \][/tex]
Thus, the height of the tower is [tex]\( 252.5 \)[/tex] meters.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.