Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve the given problem step by step:
Question: What is the amount of heat released when the temperature of 250.0 g of water increases from 20.0°C to 35.0°C?
### Step-by-Step Solution:
1. Determine the mass of the water [tex]\( (m) \)[/tex]:
The mass of the water given is 250.0 grams.
2. Identify the initial and final temperatures [tex]\( (T_i \text{ and } T_f) \)[/tex]:
- Initial temperature [tex]\( T_i \)[/tex] = 20.0°C
- Final temperature [tex]\( T_f \)[/tex] = 35.0°C
3. Calculate the temperature change [tex]\( (\Delta T) \)[/tex]:
[tex]\[ \Delta T = T_f - T_i \][/tex]
Substitute:
[tex]\[ \Delta T = 35.0°C - 20.0°C = 15.0°C \][/tex]
4. Find the specific heat capacity of water [tex]\( (c) \)[/tex]:
The specific heat capacity of water is 4.18 J/g°C.
5. Use the formula for the amount of heat [tex]\( (q) \)[/tex]:
The formula to calculate the amount of heat absorbed or released is:
[tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
6. Substitute the values into the formula:
- [tex]\( m = 250.0 \)[/tex] grams
- [tex]\( c = 4.18 \)[/tex] J/g°C
- [tex]\( \Delta T = 15.0 \)[/tex]°C
[tex]\[ q = 250.0 \, \text{g} \times 4.18 \, \text{J/g°C} \times 15.0 \, \text{°C} \][/tex]
7. Calculate the result:
[tex]\[ q = 250.0 \times 4.18 \times 15.0 \][/tex]
[tex]\[ q = 15675.0 \, \text{J} \][/tex]
### Final Answer:
The amount of heat released when the temperature of 250.0 grams of water increases from 20.0°C to 35.0°C is 15,675.0 Joules.
Question: What is the amount of heat released when the temperature of 250.0 g of water increases from 20.0°C to 35.0°C?
### Step-by-Step Solution:
1. Determine the mass of the water [tex]\( (m) \)[/tex]:
The mass of the water given is 250.0 grams.
2. Identify the initial and final temperatures [tex]\( (T_i \text{ and } T_f) \)[/tex]:
- Initial temperature [tex]\( T_i \)[/tex] = 20.0°C
- Final temperature [tex]\( T_f \)[/tex] = 35.0°C
3. Calculate the temperature change [tex]\( (\Delta T) \)[/tex]:
[tex]\[ \Delta T = T_f - T_i \][/tex]
Substitute:
[tex]\[ \Delta T = 35.0°C - 20.0°C = 15.0°C \][/tex]
4. Find the specific heat capacity of water [tex]\( (c) \)[/tex]:
The specific heat capacity of water is 4.18 J/g°C.
5. Use the formula for the amount of heat [tex]\( (q) \)[/tex]:
The formula to calculate the amount of heat absorbed or released is:
[tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
6. Substitute the values into the formula:
- [tex]\( m = 250.0 \)[/tex] grams
- [tex]\( c = 4.18 \)[/tex] J/g°C
- [tex]\( \Delta T = 15.0 \)[/tex]°C
[tex]\[ q = 250.0 \, \text{g} \times 4.18 \, \text{J/g°C} \times 15.0 \, \text{°C} \][/tex]
7. Calculate the result:
[tex]\[ q = 250.0 \times 4.18 \times 15.0 \][/tex]
[tex]\[ q = 15675.0 \, \text{J} \][/tex]
### Final Answer:
The amount of heat released when the temperature of 250.0 grams of water increases from 20.0°C to 35.0°C is 15,675.0 Joules.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.