At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's solve the given problem step by step:
Question: What is the amount of heat released when the temperature of 250.0 g of water increases from 20.0°C to 35.0°C?
### Step-by-Step Solution:
1. Determine the mass of the water [tex]\( (m) \)[/tex]:
The mass of the water given is 250.0 grams.
2. Identify the initial and final temperatures [tex]\( (T_i \text{ and } T_f) \)[/tex]:
- Initial temperature [tex]\( T_i \)[/tex] = 20.0°C
- Final temperature [tex]\( T_f \)[/tex] = 35.0°C
3. Calculate the temperature change [tex]\( (\Delta T) \)[/tex]:
[tex]\[ \Delta T = T_f - T_i \][/tex]
Substitute:
[tex]\[ \Delta T = 35.0°C - 20.0°C = 15.0°C \][/tex]
4. Find the specific heat capacity of water [tex]\( (c) \)[/tex]:
The specific heat capacity of water is 4.18 J/g°C.
5. Use the formula for the amount of heat [tex]\( (q) \)[/tex]:
The formula to calculate the amount of heat absorbed or released is:
[tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
6. Substitute the values into the formula:
- [tex]\( m = 250.0 \)[/tex] grams
- [tex]\( c = 4.18 \)[/tex] J/g°C
- [tex]\( \Delta T = 15.0 \)[/tex]°C
[tex]\[ q = 250.0 \, \text{g} \times 4.18 \, \text{J/g°C} \times 15.0 \, \text{°C} \][/tex]
7. Calculate the result:
[tex]\[ q = 250.0 \times 4.18 \times 15.0 \][/tex]
[tex]\[ q = 15675.0 \, \text{J} \][/tex]
### Final Answer:
The amount of heat released when the temperature of 250.0 grams of water increases from 20.0°C to 35.0°C is 15,675.0 Joules.
Question: What is the amount of heat released when the temperature of 250.0 g of water increases from 20.0°C to 35.0°C?
### Step-by-Step Solution:
1. Determine the mass of the water [tex]\( (m) \)[/tex]:
The mass of the water given is 250.0 grams.
2. Identify the initial and final temperatures [tex]\( (T_i \text{ and } T_f) \)[/tex]:
- Initial temperature [tex]\( T_i \)[/tex] = 20.0°C
- Final temperature [tex]\( T_f \)[/tex] = 35.0°C
3. Calculate the temperature change [tex]\( (\Delta T) \)[/tex]:
[tex]\[ \Delta T = T_f - T_i \][/tex]
Substitute:
[tex]\[ \Delta T = 35.0°C - 20.0°C = 15.0°C \][/tex]
4. Find the specific heat capacity of water [tex]\( (c) \)[/tex]:
The specific heat capacity of water is 4.18 J/g°C.
5. Use the formula for the amount of heat [tex]\( (q) \)[/tex]:
The formula to calculate the amount of heat absorbed or released is:
[tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
6. Substitute the values into the formula:
- [tex]\( m = 250.0 \)[/tex] grams
- [tex]\( c = 4.18 \)[/tex] J/g°C
- [tex]\( \Delta T = 15.0 \)[/tex]°C
[tex]\[ q = 250.0 \, \text{g} \times 4.18 \, \text{J/g°C} \times 15.0 \, \text{°C} \][/tex]
7. Calculate the result:
[tex]\[ q = 250.0 \times 4.18 \times 15.0 \][/tex]
[tex]\[ q = 15675.0 \, \text{J} \][/tex]
### Final Answer:
The amount of heat released when the temperature of 250.0 grams of water increases from 20.0°C to 35.0°C is 15,675.0 Joules.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.