Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's address the questions step-by-step.
### Question 3: Factoring [tex]\(20 - 4x^3\)[/tex]
To factor [tex]\(20 - 4x^3\)[/tex], we should look for the greatest common factor (GCF) of the terms in the expression.
1. Identify the terms: [tex]\(20\)[/tex] and [tex]\(-4x^3\)[/tex].
2. Determine the GCF of [tex]\(20\)[/tex] and [tex]\(-4\)[/tex]:
- [tex]\(20 = 2^2 \cdot 5\)[/tex]
- [tex]\(-4 = -2^2\)[/tex]
- The GCF is [tex]\(4\)[/tex].
3. Factor out [tex]\(4\)[/tex] from each term:
- [tex]\(20 \div 4 = 5\)[/tex]
- [tex]\(-4x^3 \div 4 = -x^3\)[/tex]
Therefore, we can write [tex]\(20 - 4x^3\)[/tex] as:
[tex]\[ 20 - 4x^3 = 4(5 - x^3) \][/tex]
From the provided multiple-choice options, the answer is:
[tex]\[ \boxed{4(5 - x^3)} \][/tex]
### Question 4: Factoring [tex]\(6x + 36\)[/tex]
To factor [tex]\(6x + 36\)[/tex], we should again look for the greatest common factor (GCF) of the terms in the expression.
1. Identify the terms: [tex]\(6x\)[/tex] and [tex]\(36\)[/tex].
2. Determine the GCF of [tex]\(6x\)[/tex] and [tex]\(36\)[/tex]:
- [tex]\(6x = 6 \cdot x\)[/tex]
- [tex]\(36 = 6 \cdot 6\)[/tex]
- The GCF is [tex]\(6\)[/tex].
3. Factor out [tex]\(6\)[/tex] from each term:
- [tex]\(6x \div 6 = x\)[/tex]
- [tex]\(36 \div 6 = 6\)[/tex]
Therefore, we can write [tex]\(6x + 36\)[/tex] as:
[tex]\[ 6x + 36 = 6(x + 6) \][/tex]
From the provided multiple-choice option, the answer is:
[tex]\[ \boxed{6(x + 36)} \][/tex]
However, note that there may be a typo in the option given, as the corrected factor form should be:
[tex]\[ 6(x + 6) \][/tex]
In conclusion:
- The correct answer to Question 3 is [tex]\(4(5 - x^3)\)[/tex].
- The correct answer to Question 4 should correct the error in the provided option and be [tex]\(6(x + 6)\)[/tex].
### Question 3: Factoring [tex]\(20 - 4x^3\)[/tex]
To factor [tex]\(20 - 4x^3\)[/tex], we should look for the greatest common factor (GCF) of the terms in the expression.
1. Identify the terms: [tex]\(20\)[/tex] and [tex]\(-4x^3\)[/tex].
2. Determine the GCF of [tex]\(20\)[/tex] and [tex]\(-4\)[/tex]:
- [tex]\(20 = 2^2 \cdot 5\)[/tex]
- [tex]\(-4 = -2^2\)[/tex]
- The GCF is [tex]\(4\)[/tex].
3. Factor out [tex]\(4\)[/tex] from each term:
- [tex]\(20 \div 4 = 5\)[/tex]
- [tex]\(-4x^3 \div 4 = -x^3\)[/tex]
Therefore, we can write [tex]\(20 - 4x^3\)[/tex] as:
[tex]\[ 20 - 4x^3 = 4(5 - x^3) \][/tex]
From the provided multiple-choice options, the answer is:
[tex]\[ \boxed{4(5 - x^3)} \][/tex]
### Question 4: Factoring [tex]\(6x + 36\)[/tex]
To factor [tex]\(6x + 36\)[/tex], we should again look for the greatest common factor (GCF) of the terms in the expression.
1. Identify the terms: [tex]\(6x\)[/tex] and [tex]\(36\)[/tex].
2. Determine the GCF of [tex]\(6x\)[/tex] and [tex]\(36\)[/tex]:
- [tex]\(6x = 6 \cdot x\)[/tex]
- [tex]\(36 = 6 \cdot 6\)[/tex]
- The GCF is [tex]\(6\)[/tex].
3. Factor out [tex]\(6\)[/tex] from each term:
- [tex]\(6x \div 6 = x\)[/tex]
- [tex]\(36 \div 6 = 6\)[/tex]
Therefore, we can write [tex]\(6x + 36\)[/tex] as:
[tex]\[ 6x + 36 = 6(x + 6) \][/tex]
From the provided multiple-choice option, the answer is:
[tex]\[ \boxed{6(x + 36)} \][/tex]
However, note that there may be a typo in the option given, as the corrected factor form should be:
[tex]\[ 6(x + 6) \][/tex]
In conclusion:
- The correct answer to Question 3 is [tex]\(4(5 - x^3)\)[/tex].
- The correct answer to Question 4 should correct the error in the provided option and be [tex]\(6(x + 6)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.