Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]

---

Rewrite [tex]\( 20 - 4x^3 \)[/tex] using a common factor.

A. [tex]\( 4x(5 - x^2) \)[/tex]

B. [tex]\( 4(5 - 4x^3) \)[/tex]

C. [tex]\( 2x(10 - 2x^2) \)[/tex]

D. [tex]\( 2(10 - 2x^3) \)[/tex]

---

Rewrite [tex]\( 6x + 36 \)[/tex] using a common factor.

A. [tex]\( 6(x + 36) \)[/tex]

Sagot :

Let's address the questions step-by-step.

### Question 3: Factoring [tex]\(20 - 4x^3\)[/tex]

To factor [tex]\(20 - 4x^3\)[/tex], we should look for the greatest common factor (GCF) of the terms in the expression.

1. Identify the terms: [tex]\(20\)[/tex] and [tex]\(-4x^3\)[/tex].

2. Determine the GCF of [tex]\(20\)[/tex] and [tex]\(-4\)[/tex]:
- [tex]\(20 = 2^2 \cdot 5\)[/tex]
- [tex]\(-4 = -2^2\)[/tex]
- The GCF is [tex]\(4\)[/tex].

3. Factor out [tex]\(4\)[/tex] from each term:
- [tex]\(20 \div 4 = 5\)[/tex]
- [tex]\(-4x^3 \div 4 = -x^3\)[/tex]

Therefore, we can write [tex]\(20 - 4x^3\)[/tex] as:
[tex]\[ 20 - 4x^3 = 4(5 - x^3) \][/tex]

From the provided multiple-choice options, the answer is:
[tex]\[ \boxed{4(5 - x^3)} \][/tex]

### Question 4: Factoring [tex]\(6x + 36\)[/tex]

To factor [tex]\(6x + 36\)[/tex], we should again look for the greatest common factor (GCF) of the terms in the expression.

1. Identify the terms: [tex]\(6x\)[/tex] and [tex]\(36\)[/tex].

2. Determine the GCF of [tex]\(6x\)[/tex] and [tex]\(36\)[/tex]:
- [tex]\(6x = 6 \cdot x\)[/tex]
- [tex]\(36 = 6 \cdot 6\)[/tex]
- The GCF is [tex]\(6\)[/tex].

3. Factor out [tex]\(6\)[/tex] from each term:
- [tex]\(6x \div 6 = x\)[/tex]
- [tex]\(36 \div 6 = 6\)[/tex]

Therefore, we can write [tex]\(6x + 36\)[/tex] as:
[tex]\[ 6x + 36 = 6(x + 6) \][/tex]

From the provided multiple-choice option, the answer is:
[tex]\[ \boxed{6(x + 36)} \][/tex]

However, note that there may be a typo in the option given, as the corrected factor form should be:
[tex]\[ 6(x + 6) \][/tex]

In conclusion:
- The correct answer to Question 3 is [tex]\(4(5 - x^3)\)[/tex].
- The correct answer to Question 4 should correct the error in the provided option and be [tex]\(6(x + 6)\)[/tex].