Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Select the correct answer.

The graph of a function is a parabola that has a minimum at the point [tex]\((-3,9)\)[/tex]. Which equation could represent the function?

A. [tex]\(g(x)=3(x-3)^2+9\)[/tex]

B. [tex]\(g(x)=-(x+3)^2+9\)[/tex]

C. [tex]\(g(x)=-\frac{1}{2}(x-3)^2+9\)[/tex]

D. [tex]\(g(x)=2(x+3)^2+9\)[/tex]

Sagot :

To determine which equation could represent a parabola with a minimum at the point [tex]\((-3,9)\)[/tex], we need to observe the following characteristics of the function:

1. Vertex Form of a Parabola: The general vertex form of a quadratic function is given by [tex]\( g(x) = a(x-h)^2 + k \)[/tex] where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
2. Minimum Point: The value of [tex]\(a\)[/tex] in the equation will determine if the parabola opens upwards (minimum point) or downwards (maximum point). If [tex]\(a > 0\)[/tex], the parabola opens upwards, making [tex]\((h, k)\)[/tex] a minimum point. If [tex]\(a < 0\)[/tex], the parabola opens downwards, making [tex]\((h, k)\)[/tex] a maximum point.
3. Given vertex: For the point [tex]\((-3, 9)\)[/tex], the vertex form should be [tex]\( g(x) = a(x+3)^2 + 9 \)[/tex], indicating that the vertex [tex]\((h, k)\)[/tex] corresponds to [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex].

Now, let's analyze the given options:

A. [tex]\( g(x) = 3(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].

B. [tex]\( g(x) = -(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. However, the coefficient of the quadratic term is negative ([tex]\( -1 \)[/tex]), indicating that the parabola opens downwards and thus the point [tex]\((-3, 9)\)[/tex] is a maximum point. This contradicts the requirement of having a minimum.

C. [tex]\( g(x) = -\frac{1}{2}(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].

D. [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. The coefficient of the quadratic term is positive ([tex]\( 2 \)[/tex]), indicating that the parabola opens upwards and hence the point [tex]\((-3, 9)\)[/tex] is a minimum point.

Since [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex] matches all the given characteristics correctly, the correct answer is:

D. [tex]\( g(x)=2(x+3)^2+9 \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.