Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which equation could represent a parabola with a minimum at the point [tex]\((-3,9)\)[/tex], we need to observe the following characteristics of the function:
1. Vertex Form of a Parabola: The general vertex form of a quadratic function is given by [tex]\( g(x) = a(x-h)^2 + k \)[/tex] where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
2. Minimum Point: The value of [tex]\(a\)[/tex] in the equation will determine if the parabola opens upwards (minimum point) or downwards (maximum point). If [tex]\(a > 0\)[/tex], the parabola opens upwards, making [tex]\((h, k)\)[/tex] a minimum point. If [tex]\(a < 0\)[/tex], the parabola opens downwards, making [tex]\((h, k)\)[/tex] a maximum point.
3. Given vertex: For the point [tex]\((-3, 9)\)[/tex], the vertex form should be [tex]\( g(x) = a(x+3)^2 + 9 \)[/tex], indicating that the vertex [tex]\((h, k)\)[/tex] corresponds to [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex].
Now, let's analyze the given options:
A. [tex]\( g(x) = 3(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].
B. [tex]\( g(x) = -(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. However, the coefficient of the quadratic term is negative ([tex]\( -1 \)[/tex]), indicating that the parabola opens downwards and thus the point [tex]\((-3, 9)\)[/tex] is a maximum point. This contradicts the requirement of having a minimum.
C. [tex]\( g(x) = -\frac{1}{2}(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].
D. [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. The coefficient of the quadratic term is positive ([tex]\( 2 \)[/tex]), indicating that the parabola opens upwards and hence the point [tex]\((-3, 9)\)[/tex] is a minimum point.
Since [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex] matches all the given characteristics correctly, the correct answer is:
D. [tex]\( g(x)=2(x+3)^2+9 \)[/tex]
1. Vertex Form of a Parabola: The general vertex form of a quadratic function is given by [tex]\( g(x) = a(x-h)^2 + k \)[/tex] where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
2. Minimum Point: The value of [tex]\(a\)[/tex] in the equation will determine if the parabola opens upwards (minimum point) or downwards (maximum point). If [tex]\(a > 0\)[/tex], the parabola opens upwards, making [tex]\((h, k)\)[/tex] a minimum point. If [tex]\(a < 0\)[/tex], the parabola opens downwards, making [tex]\((h, k)\)[/tex] a maximum point.
3. Given vertex: For the point [tex]\((-3, 9)\)[/tex], the vertex form should be [tex]\( g(x) = a(x+3)^2 + 9 \)[/tex], indicating that the vertex [tex]\((h, k)\)[/tex] corresponds to [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex].
Now, let's analyze the given options:
A. [tex]\( g(x) = 3(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].
B. [tex]\( g(x) = -(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. However, the coefficient of the quadratic term is negative ([tex]\( -1 \)[/tex]), indicating that the parabola opens downwards and thus the point [tex]\((-3, 9)\)[/tex] is a maximum point. This contradicts the requirement of having a minimum.
C. [tex]\( g(x) = -\frac{1}{2}(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].
D. [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. The coefficient of the quadratic term is positive ([tex]\( 2 \)[/tex]), indicating that the parabola opens upwards and hence the point [tex]\((-3, 9)\)[/tex] is a minimum point.
Since [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex] matches all the given characteristics correctly, the correct answer is:
D. [tex]\( g(x)=2(x+3)^2+9 \)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.