Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which equation could represent a parabola with a minimum at the point [tex]\((-3,9)\)[/tex], we need to observe the following characteristics of the function:
1. Vertex Form of a Parabola: The general vertex form of a quadratic function is given by [tex]\( g(x) = a(x-h)^2 + k \)[/tex] where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
2. Minimum Point: The value of [tex]\(a\)[/tex] in the equation will determine if the parabola opens upwards (minimum point) or downwards (maximum point). If [tex]\(a > 0\)[/tex], the parabola opens upwards, making [tex]\((h, k)\)[/tex] a minimum point. If [tex]\(a < 0\)[/tex], the parabola opens downwards, making [tex]\((h, k)\)[/tex] a maximum point.
3. Given vertex: For the point [tex]\((-3, 9)\)[/tex], the vertex form should be [tex]\( g(x) = a(x+3)^2 + 9 \)[/tex], indicating that the vertex [tex]\((h, k)\)[/tex] corresponds to [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex].
Now, let's analyze the given options:
A. [tex]\( g(x) = 3(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].
B. [tex]\( g(x) = -(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. However, the coefficient of the quadratic term is negative ([tex]\( -1 \)[/tex]), indicating that the parabola opens downwards and thus the point [tex]\((-3, 9)\)[/tex] is a maximum point. This contradicts the requirement of having a minimum.
C. [tex]\( g(x) = -\frac{1}{2}(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].
D. [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. The coefficient of the quadratic term is positive ([tex]\( 2 \)[/tex]), indicating that the parabola opens upwards and hence the point [tex]\((-3, 9)\)[/tex] is a minimum point.
Since [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex] matches all the given characteristics correctly, the correct answer is:
D. [tex]\( g(x)=2(x+3)^2+9 \)[/tex]
1. Vertex Form of a Parabola: The general vertex form of a quadratic function is given by [tex]\( g(x) = a(x-h)^2 + k \)[/tex] where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
2. Minimum Point: The value of [tex]\(a\)[/tex] in the equation will determine if the parabola opens upwards (minimum point) or downwards (maximum point). If [tex]\(a > 0\)[/tex], the parabola opens upwards, making [tex]\((h, k)\)[/tex] a minimum point. If [tex]\(a < 0\)[/tex], the parabola opens downwards, making [tex]\((h, k)\)[/tex] a maximum point.
3. Given vertex: For the point [tex]\((-3, 9)\)[/tex], the vertex form should be [tex]\( g(x) = a(x+3)^2 + 9 \)[/tex], indicating that the vertex [tex]\((h, k)\)[/tex] corresponds to [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex].
Now, let's analyze the given options:
A. [tex]\( g(x) = 3(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].
B. [tex]\( g(x) = -(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. However, the coefficient of the quadratic term is negative ([tex]\( -1 \)[/tex]), indicating that the parabola opens downwards and thus the point [tex]\((-3, 9)\)[/tex] is a maximum point. This contradicts the requirement of having a minimum.
C. [tex]\( g(x) = -\frac{1}{2}(x-3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = 3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((3, 9)\)[/tex]. This does not match our given vertex of [tex]\((-3, 9)\)[/tex].
D. [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex]
- Here, the vertex form suggests [tex]\(h = -3\)[/tex] and [tex]\(k = 9\)[/tex], which gives a vertex at point [tex]\((-3, 9)\)[/tex]. The coefficient of the quadratic term is positive ([tex]\( 2 \)[/tex]), indicating that the parabola opens upwards and hence the point [tex]\((-3, 9)\)[/tex] is a minimum point.
Since [tex]\( g(x) = 2(x+3)^2 + 9 \)[/tex] matches all the given characteristics correctly, the correct answer is:
D. [tex]\( g(x)=2(x+3)^2+9 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.