Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the magnitude of the acceleration of the ball, we'll break down the given information and solve it step by step.
### Step 1: Understanding Initial and Final Velocities
- Initial velocity ([tex]\(v_0\)[/tex]) of the ball: [tex]\(2.11 \, \text{m/s}\)[/tex]
- Initial angle ([tex]\(\theta_0\)[/tex]): [tex]\(-37.0^{\circ}\)[/tex]
- Final velocity ([tex]\(v_f\)[/tex]) of the ball: [tex]\(3.80 \, \text{m/s}\)[/tex]
- Final angle ([tex]\(\theta_f\)[/tex]): [tex]\(150.0^{\circ}\)[/tex]
- Contact time ([tex]\(t\)[/tex]): [tex]\(0.19 \, \text{s}\)[/tex]
### Step 2: Convert Angles to Radians
Angles need to be in radians for trigonometric calculations:
- Initial angle in radians: [tex]\(\theta_0 = -37.0^{\circ} = -0.6457718232380625 \, \text{radians}\)[/tex]
- Final angle in radians: [tex]\(\theta_f = 150.0^{\circ} = 2.6179938779914944 \, \text{radians}\)[/tex]
### Step 3: Calculate Initial Velocity Components
Using the initial velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{0_x} = v_0 \cos(\theta_0) = 2.11 \cos(-37.0^{\circ}) = 1.6851209261997877 \, \text{m/s}\)[/tex]
- [tex]\(v_{0_y} = v_0 \sin(\theta_0) = 2.11 \sin(-37.0^{\circ}) = -1.2698296988508218 \, \text{m/s}\)[/tex]
### Step 4: Calculate Final Velocity Components
Using the final velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{f_x} = v_f \cos(\theta_f) = 3.80 \cos(150.0^{\circ}) = -3.290896534380867 \, \text{m/s}\)[/tex]
- [tex]\(v_{f_y} = v_f \sin(\theta_f) = 3.80 \sin(150.0^{\circ}) = 1.8999999999999997 \, \text{m/s}\)[/tex]
### Step 5: Calculate Changes in Velocities
Determine the changes in the velocity components:
- [tex]\(\Delta v_x = v_{f_x} - v_{0_x} = -3.290896534380867 - 1.6851209261997877 = -4.976017460580655 \, \text{m/s}\)[/tex]
- [tex]\(\Delta v_y = v_{f_y} - v_{0_y} = 1.8999999999999997 - (-1.2698296988508218) = 3.1698296988508217 \, \text{m/s}\)[/tex]
### Step 6: Calculate Components of Acceleration
Using the changes in velocity and contact time to determine the acceleration components:
- [tex]\(a_x = \frac{\Delta v_x}{t} = \frac{-4.976017460580655}{0.19} = -26.189565582003446 \, \text{m/s}^2\)[/tex]
- [tex]\(a_y = \frac{\Delta v_y}{t} = \frac{3.1698296988508217}{0.19} = 16.68331420447801 \, \text{m/s}^2\)[/tex]
### Step 7: Calculate the Magnitude of Acceleration
Finally, determine the overall magnitude of the acceleration using the Pythagorean theorem:
- [tex]\(a = \sqrt{a_x^2 + a_y^2}\)[/tex]
- [tex]\(a = \sqrt{(-26.189565582003446)^2 + (16.68331420447801)^2} = 31.051993788151464 \, \text{m/s}^2\)[/tex]
### Answer
The magnitude of the acceleration of the ball is:
[tex]\[ a = 31.051993788151464 \, \text{m/s}^2 \][/tex]
### Step 1: Understanding Initial and Final Velocities
- Initial velocity ([tex]\(v_0\)[/tex]) of the ball: [tex]\(2.11 \, \text{m/s}\)[/tex]
- Initial angle ([tex]\(\theta_0\)[/tex]): [tex]\(-37.0^{\circ}\)[/tex]
- Final velocity ([tex]\(v_f\)[/tex]) of the ball: [tex]\(3.80 \, \text{m/s}\)[/tex]
- Final angle ([tex]\(\theta_f\)[/tex]): [tex]\(150.0^{\circ}\)[/tex]
- Contact time ([tex]\(t\)[/tex]): [tex]\(0.19 \, \text{s}\)[/tex]
### Step 2: Convert Angles to Radians
Angles need to be in radians for trigonometric calculations:
- Initial angle in radians: [tex]\(\theta_0 = -37.0^{\circ} = -0.6457718232380625 \, \text{radians}\)[/tex]
- Final angle in radians: [tex]\(\theta_f = 150.0^{\circ} = 2.6179938779914944 \, \text{radians}\)[/tex]
### Step 3: Calculate Initial Velocity Components
Using the initial velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{0_x} = v_0 \cos(\theta_0) = 2.11 \cos(-37.0^{\circ}) = 1.6851209261997877 \, \text{m/s}\)[/tex]
- [tex]\(v_{0_y} = v_0 \sin(\theta_0) = 2.11 \sin(-37.0^{\circ}) = -1.2698296988508218 \, \text{m/s}\)[/tex]
### Step 4: Calculate Final Velocity Components
Using the final velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{f_x} = v_f \cos(\theta_f) = 3.80 \cos(150.0^{\circ}) = -3.290896534380867 \, \text{m/s}\)[/tex]
- [tex]\(v_{f_y} = v_f \sin(\theta_f) = 3.80 \sin(150.0^{\circ}) = 1.8999999999999997 \, \text{m/s}\)[/tex]
### Step 5: Calculate Changes in Velocities
Determine the changes in the velocity components:
- [tex]\(\Delta v_x = v_{f_x} - v_{0_x} = -3.290896534380867 - 1.6851209261997877 = -4.976017460580655 \, \text{m/s}\)[/tex]
- [tex]\(\Delta v_y = v_{f_y} - v_{0_y} = 1.8999999999999997 - (-1.2698296988508218) = 3.1698296988508217 \, \text{m/s}\)[/tex]
### Step 6: Calculate Components of Acceleration
Using the changes in velocity and contact time to determine the acceleration components:
- [tex]\(a_x = \frac{\Delta v_x}{t} = \frac{-4.976017460580655}{0.19} = -26.189565582003446 \, \text{m/s}^2\)[/tex]
- [tex]\(a_y = \frac{\Delta v_y}{t} = \frac{3.1698296988508217}{0.19} = 16.68331420447801 \, \text{m/s}^2\)[/tex]
### Step 7: Calculate the Magnitude of Acceleration
Finally, determine the overall magnitude of the acceleration using the Pythagorean theorem:
- [tex]\(a = \sqrt{a_x^2 + a_y^2}\)[/tex]
- [tex]\(a = \sqrt{(-26.189565582003446)^2 + (16.68331420447801)^2} = 31.051993788151464 \, \text{m/s}^2\)[/tex]
### Answer
The magnitude of the acceleration of the ball is:
[tex]\[ a = 31.051993788151464 \, \text{m/s}^2 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.