Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the magnitude of the acceleration of the ball, we'll break down the given information and solve it step by step.
### Step 1: Understanding Initial and Final Velocities
- Initial velocity ([tex]\(v_0\)[/tex]) of the ball: [tex]\(2.11 \, \text{m/s}\)[/tex]
- Initial angle ([tex]\(\theta_0\)[/tex]): [tex]\(-37.0^{\circ}\)[/tex]
- Final velocity ([tex]\(v_f\)[/tex]) of the ball: [tex]\(3.80 \, \text{m/s}\)[/tex]
- Final angle ([tex]\(\theta_f\)[/tex]): [tex]\(150.0^{\circ}\)[/tex]
- Contact time ([tex]\(t\)[/tex]): [tex]\(0.19 \, \text{s}\)[/tex]
### Step 2: Convert Angles to Radians
Angles need to be in radians for trigonometric calculations:
- Initial angle in radians: [tex]\(\theta_0 = -37.0^{\circ} = -0.6457718232380625 \, \text{radians}\)[/tex]
- Final angle in radians: [tex]\(\theta_f = 150.0^{\circ} = 2.6179938779914944 \, \text{radians}\)[/tex]
### Step 3: Calculate Initial Velocity Components
Using the initial velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{0_x} = v_0 \cos(\theta_0) = 2.11 \cos(-37.0^{\circ}) = 1.6851209261997877 \, \text{m/s}\)[/tex]
- [tex]\(v_{0_y} = v_0 \sin(\theta_0) = 2.11 \sin(-37.0^{\circ}) = -1.2698296988508218 \, \text{m/s}\)[/tex]
### Step 4: Calculate Final Velocity Components
Using the final velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{f_x} = v_f \cos(\theta_f) = 3.80 \cos(150.0^{\circ}) = -3.290896534380867 \, \text{m/s}\)[/tex]
- [tex]\(v_{f_y} = v_f \sin(\theta_f) = 3.80 \sin(150.0^{\circ}) = 1.8999999999999997 \, \text{m/s}\)[/tex]
### Step 5: Calculate Changes in Velocities
Determine the changes in the velocity components:
- [tex]\(\Delta v_x = v_{f_x} - v_{0_x} = -3.290896534380867 - 1.6851209261997877 = -4.976017460580655 \, \text{m/s}\)[/tex]
- [tex]\(\Delta v_y = v_{f_y} - v_{0_y} = 1.8999999999999997 - (-1.2698296988508218) = 3.1698296988508217 \, \text{m/s}\)[/tex]
### Step 6: Calculate Components of Acceleration
Using the changes in velocity and contact time to determine the acceleration components:
- [tex]\(a_x = \frac{\Delta v_x}{t} = \frac{-4.976017460580655}{0.19} = -26.189565582003446 \, \text{m/s}^2\)[/tex]
- [tex]\(a_y = \frac{\Delta v_y}{t} = \frac{3.1698296988508217}{0.19} = 16.68331420447801 \, \text{m/s}^2\)[/tex]
### Step 7: Calculate the Magnitude of Acceleration
Finally, determine the overall magnitude of the acceleration using the Pythagorean theorem:
- [tex]\(a = \sqrt{a_x^2 + a_y^2}\)[/tex]
- [tex]\(a = \sqrt{(-26.189565582003446)^2 + (16.68331420447801)^2} = 31.051993788151464 \, \text{m/s}^2\)[/tex]
### Answer
The magnitude of the acceleration of the ball is:
[tex]\[ a = 31.051993788151464 \, \text{m/s}^2 \][/tex]
### Step 1: Understanding Initial and Final Velocities
- Initial velocity ([tex]\(v_0\)[/tex]) of the ball: [tex]\(2.11 \, \text{m/s}\)[/tex]
- Initial angle ([tex]\(\theta_0\)[/tex]): [tex]\(-37.0^{\circ}\)[/tex]
- Final velocity ([tex]\(v_f\)[/tex]) of the ball: [tex]\(3.80 \, \text{m/s}\)[/tex]
- Final angle ([tex]\(\theta_f\)[/tex]): [tex]\(150.0^{\circ}\)[/tex]
- Contact time ([tex]\(t\)[/tex]): [tex]\(0.19 \, \text{s}\)[/tex]
### Step 2: Convert Angles to Radians
Angles need to be in radians for trigonometric calculations:
- Initial angle in radians: [tex]\(\theta_0 = -37.0^{\circ} = -0.6457718232380625 \, \text{radians}\)[/tex]
- Final angle in radians: [tex]\(\theta_f = 150.0^{\circ} = 2.6179938779914944 \, \text{radians}\)[/tex]
### Step 3: Calculate Initial Velocity Components
Using the initial velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{0_x} = v_0 \cos(\theta_0) = 2.11 \cos(-37.0^{\circ}) = 1.6851209261997877 \, \text{m/s}\)[/tex]
- [tex]\(v_{0_y} = v_0 \sin(\theta_0) = 2.11 \sin(-37.0^{\circ}) = -1.2698296988508218 \, \text{m/s}\)[/tex]
### Step 4: Calculate Final Velocity Components
Using the final velocity and angle to find the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] components:
- [tex]\(v_{f_x} = v_f \cos(\theta_f) = 3.80 \cos(150.0^{\circ}) = -3.290896534380867 \, \text{m/s}\)[/tex]
- [tex]\(v_{f_y} = v_f \sin(\theta_f) = 3.80 \sin(150.0^{\circ}) = 1.8999999999999997 \, \text{m/s}\)[/tex]
### Step 5: Calculate Changes in Velocities
Determine the changes in the velocity components:
- [tex]\(\Delta v_x = v_{f_x} - v_{0_x} = -3.290896534380867 - 1.6851209261997877 = -4.976017460580655 \, \text{m/s}\)[/tex]
- [tex]\(\Delta v_y = v_{f_y} - v_{0_y} = 1.8999999999999997 - (-1.2698296988508218) = 3.1698296988508217 \, \text{m/s}\)[/tex]
### Step 6: Calculate Components of Acceleration
Using the changes in velocity and contact time to determine the acceleration components:
- [tex]\(a_x = \frac{\Delta v_x}{t} = \frac{-4.976017460580655}{0.19} = -26.189565582003446 \, \text{m/s}^2\)[/tex]
- [tex]\(a_y = \frac{\Delta v_y}{t} = \frac{3.1698296988508217}{0.19} = 16.68331420447801 \, \text{m/s}^2\)[/tex]
### Step 7: Calculate the Magnitude of Acceleration
Finally, determine the overall magnitude of the acceleration using the Pythagorean theorem:
- [tex]\(a = \sqrt{a_x^2 + a_y^2}\)[/tex]
- [tex]\(a = \sqrt{(-26.189565582003446)^2 + (16.68331420447801)^2} = 31.051993788151464 \, \text{m/s}^2\)[/tex]
### Answer
The magnitude of the acceleration of the ball is:
[tex]\[ a = 31.051993788151464 \, \text{m/s}^2 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.