Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the magnitude of the acceleration of the ball, let's break down the problem into step-by-step calculations.
### Step 1: Determine the Initial and Final Velocity Components
First, we separate the initial and final velocities into their x and y components. Let's start by converting the angles from degrees to radians:
1. Initial angle: [tex]\(-45.0^\circ\)[/tex]
2. Final angle: [tex]\(125.0^\circ\)[/tex]
### Conversion to Radians
We'll need to convert these angles to radians:
[tex]\[ \text{angle\_initial\_rad} = -45.0^\circ \times \frac{\pi}{180} \approx -0.7854 \text{ radians} \][/tex]
[tex]\[ \text{angle\_final\_rad} = 125.0^\circ \times \frac{\pi}{180} \approx 2.1817 \text{ radians} \][/tex]
### Step 2: Compute Initial and Final Velocity Components
Using trigonometric functions:
- Initial velocity components:
[tex]\[ v_{\text{initial\_x}} = 1.75 \, \text{m/s} \times \cos(-0.7854) \approx 1.2374 \, \text{m/s} \][/tex]
[tex]\[ v_{\text{initial\_y}} = 1.75 \, \text{m/s} \times \sin(-0.7854) \approx -1.2374 \, \text{m/s} \][/tex]
- Final velocity components:
[tex]\[ v_{\text{final\_x}} = 2.95 \, \text{m/s} \times \cos(2.1817) \approx -1.6921 \, \text{m/s} \][/tex]
[tex]\[ v_{\text{final\_y}} = 2.95 \, \text{m/s} \times \sin(2.1817) \approx 2.4165 \, \text{m/s} \][/tex]
### Step 3: Calculate the Change in Velocity Components
- Change in the [tex]\(x\)[/tex]-component of velocity:
[tex]\[ \Delta v_x = v_{\text{final\_x}} - v_{\text{initial\_x}} \approx -1.6921 - 1.2374 \approx -2.9295 \, \text{m/s} \][/tex]
- Change in the [tex]\(y\)[/tex]-component of velocity:
[tex]\[ \Delta v_y = v_{\text{final\_y}} - v_{\text{initial\_y}} \approx 2.4165 - (-1.2374) \approx 3.6539 \, \text{m/s} \][/tex]
### Step 4: Compute the Magnitude of the Change in Velocity
The magnitude of the change in velocity ([tex]\(\Delta v\)[/tex]) can be calculated using Pythagoras' theorem:
[tex]\[ \Delta v = \sqrt{(\Delta v_x)^2 + (\Delta v_y)^2} \][/tex]
[tex]\[ \Delta v \approx \sqrt{(-2.9295)^2 + (3.6539)^2} \approx \sqrt{8.5823 + 13.3539} \approx \sqrt{21.9362} \approx 4.6833 \, \text{m/s} \][/tex]
### Step 5: Calculate the Magnitude of the Acceleration
Finally, to find the magnitude of the acceleration ([tex]\(a\)[/tex]), we use the formula:
[tex]\[ a = \frac{\Delta v}{\text{contact time}} \][/tex]
[tex]\[ a \approx \frac{4.6833 \, \text{m/s}}{0.30 \, \text{s}} \approx 15.6109 \, \text{m/s}^2 \][/tex]
### Conclusion
The magnitude of the acceleration of the ball is:
[tex]\[ a \approx 15.6109 \, \text{m/s}^2 \][/tex]
### Step 1: Determine the Initial and Final Velocity Components
First, we separate the initial and final velocities into their x and y components. Let's start by converting the angles from degrees to radians:
1. Initial angle: [tex]\(-45.0^\circ\)[/tex]
2. Final angle: [tex]\(125.0^\circ\)[/tex]
### Conversion to Radians
We'll need to convert these angles to radians:
[tex]\[ \text{angle\_initial\_rad} = -45.0^\circ \times \frac{\pi}{180} \approx -0.7854 \text{ radians} \][/tex]
[tex]\[ \text{angle\_final\_rad} = 125.0^\circ \times \frac{\pi}{180} \approx 2.1817 \text{ radians} \][/tex]
### Step 2: Compute Initial and Final Velocity Components
Using trigonometric functions:
- Initial velocity components:
[tex]\[ v_{\text{initial\_x}} = 1.75 \, \text{m/s} \times \cos(-0.7854) \approx 1.2374 \, \text{m/s} \][/tex]
[tex]\[ v_{\text{initial\_y}} = 1.75 \, \text{m/s} \times \sin(-0.7854) \approx -1.2374 \, \text{m/s} \][/tex]
- Final velocity components:
[tex]\[ v_{\text{final\_x}} = 2.95 \, \text{m/s} \times \cos(2.1817) \approx -1.6921 \, \text{m/s} \][/tex]
[tex]\[ v_{\text{final\_y}} = 2.95 \, \text{m/s} \times \sin(2.1817) \approx 2.4165 \, \text{m/s} \][/tex]
### Step 3: Calculate the Change in Velocity Components
- Change in the [tex]\(x\)[/tex]-component of velocity:
[tex]\[ \Delta v_x = v_{\text{final\_x}} - v_{\text{initial\_x}} \approx -1.6921 - 1.2374 \approx -2.9295 \, \text{m/s} \][/tex]
- Change in the [tex]\(y\)[/tex]-component of velocity:
[tex]\[ \Delta v_y = v_{\text{final\_y}} - v_{\text{initial\_y}} \approx 2.4165 - (-1.2374) \approx 3.6539 \, \text{m/s} \][/tex]
### Step 4: Compute the Magnitude of the Change in Velocity
The magnitude of the change in velocity ([tex]\(\Delta v\)[/tex]) can be calculated using Pythagoras' theorem:
[tex]\[ \Delta v = \sqrt{(\Delta v_x)^2 + (\Delta v_y)^2} \][/tex]
[tex]\[ \Delta v \approx \sqrt{(-2.9295)^2 + (3.6539)^2} \approx \sqrt{8.5823 + 13.3539} \approx \sqrt{21.9362} \approx 4.6833 \, \text{m/s} \][/tex]
### Step 5: Calculate the Magnitude of the Acceleration
Finally, to find the magnitude of the acceleration ([tex]\(a\)[/tex]), we use the formula:
[tex]\[ a = \frac{\Delta v}{\text{contact time}} \][/tex]
[tex]\[ a \approx \frac{4.6833 \, \text{m/s}}{0.30 \, \text{s}} \approx 15.6109 \, \text{m/s}^2 \][/tex]
### Conclusion
The magnitude of the acceleration of the ball is:
[tex]\[ a \approx 15.6109 \, \text{m/s}^2 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.