Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
## Part (a) Interpretation of [tex]\( b_1 \)[/tex] and [tex]\( b_2 \)[/tex]
In the given regression equation [tex]\( y = 29.1031 + 0.5549 x_1 + 0.4097 x_2 \)[/tex]:
- [tex]\( b_1 = 0.5549 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_1 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.5549 units, provided that [tex]\( x_2 \)[/tex] remains constant.
- [tex]\( b_2 = 0.4097 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_2 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.4097 units, provided that [tex]\( x_1 \)[/tex] remains constant.
## Part (b) Estimate [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex]
To estimate [tex]\( y \)[/tex] for [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex], we substitute these values into the regression equation:
[tex]\[ y = 29.1031 + 0.5549 \cdot 180 + 0.4097 \cdot 310 \][/tex]
Let's break down the computation step-by-step:
1. Calculate [tex]\( 0.5549 \cdot 180 \)[/tex]:
[tex]\[ 0.5549 \cdot 180 = 99.882 \][/tex]
2. Calculate [tex]\( 0.4097 \cdot 310 \)[/tex]:
[tex]\[ 0.4097 \cdot 310 = 126.007 \][/tex]
3. Add these values to the constant term [tex]\( 29.1031 \)[/tex]:
[tex]\[ y = 29.1031 + 99.882 + 126.007 \][/tex]
[tex]\[ y = 255.9921 \][/tex]
Thus, the estimated value of [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex] is:
[tex]\[ y \approx 255.992 \][/tex]
In the given regression equation [tex]\( y = 29.1031 + 0.5549 x_1 + 0.4097 x_2 \)[/tex]:
- [tex]\( b_1 = 0.5549 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_1 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.5549 units, provided that [tex]\( x_2 \)[/tex] remains constant.
- [tex]\( b_2 = 0.4097 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_2 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.4097 units, provided that [tex]\( x_1 \)[/tex] remains constant.
## Part (b) Estimate [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex]
To estimate [tex]\( y \)[/tex] for [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex], we substitute these values into the regression equation:
[tex]\[ y = 29.1031 + 0.5549 \cdot 180 + 0.4097 \cdot 310 \][/tex]
Let's break down the computation step-by-step:
1. Calculate [tex]\( 0.5549 \cdot 180 \)[/tex]:
[tex]\[ 0.5549 \cdot 180 = 99.882 \][/tex]
2. Calculate [tex]\( 0.4097 \cdot 310 \)[/tex]:
[tex]\[ 0.4097 \cdot 310 = 126.007 \][/tex]
3. Add these values to the constant term [tex]\( 29.1031 \)[/tex]:
[tex]\[ y = 29.1031 + 99.882 + 126.007 \][/tex]
[tex]\[ y = 255.9921 \][/tex]
Thus, the estimated value of [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex] is:
[tex]\[ y \approx 255.992 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.