Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
## Part (a) Interpretation of [tex]\( b_1 \)[/tex] and [tex]\( b_2 \)[/tex]
In the given regression equation [tex]\( y = 29.1031 + 0.5549 x_1 + 0.4097 x_2 \)[/tex]:
- [tex]\( b_1 = 0.5549 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_1 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.5549 units, provided that [tex]\( x_2 \)[/tex] remains constant.
- [tex]\( b_2 = 0.4097 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_2 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.4097 units, provided that [tex]\( x_1 \)[/tex] remains constant.
## Part (b) Estimate [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex]
To estimate [tex]\( y \)[/tex] for [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex], we substitute these values into the regression equation:
[tex]\[ y = 29.1031 + 0.5549 \cdot 180 + 0.4097 \cdot 310 \][/tex]
Let's break down the computation step-by-step:
1. Calculate [tex]\( 0.5549 \cdot 180 \)[/tex]:
[tex]\[ 0.5549 \cdot 180 = 99.882 \][/tex]
2. Calculate [tex]\( 0.4097 \cdot 310 \)[/tex]:
[tex]\[ 0.4097 \cdot 310 = 126.007 \][/tex]
3. Add these values to the constant term [tex]\( 29.1031 \)[/tex]:
[tex]\[ y = 29.1031 + 99.882 + 126.007 \][/tex]
[tex]\[ y = 255.9921 \][/tex]
Thus, the estimated value of [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex] is:
[tex]\[ y \approx 255.992 \][/tex]
In the given regression equation [tex]\( y = 29.1031 + 0.5549 x_1 + 0.4097 x_2 \)[/tex]:
- [tex]\( b_1 = 0.5549 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_1 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.5549 units, provided that [tex]\( x_2 \)[/tex] remains constant.
- [tex]\( b_2 = 0.4097 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_2 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.4097 units, provided that [tex]\( x_1 \)[/tex] remains constant.
## Part (b) Estimate [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex]
To estimate [tex]\( y \)[/tex] for [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex], we substitute these values into the regression equation:
[tex]\[ y = 29.1031 + 0.5549 \cdot 180 + 0.4097 \cdot 310 \][/tex]
Let's break down the computation step-by-step:
1. Calculate [tex]\( 0.5549 \cdot 180 \)[/tex]:
[tex]\[ 0.5549 \cdot 180 = 99.882 \][/tex]
2. Calculate [tex]\( 0.4097 \cdot 310 \)[/tex]:
[tex]\[ 0.4097 \cdot 310 = 126.007 \][/tex]
3. Add these values to the constant term [tex]\( 29.1031 \)[/tex]:
[tex]\[ y = 29.1031 + 99.882 + 126.007 \][/tex]
[tex]\[ y = 255.9921 \][/tex]
Thus, the estimated value of [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex] is:
[tex]\[ y \approx 255.992 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.