Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
## Part (a) Interpretation of [tex]\( b_1 \)[/tex] and [tex]\( b_2 \)[/tex]
In the given regression equation [tex]\( y = 29.1031 + 0.5549 x_1 + 0.4097 x_2 \)[/tex]:
- [tex]\( b_1 = 0.5549 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_1 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.5549 units, provided that [tex]\( x_2 \)[/tex] remains constant.
- [tex]\( b_2 = 0.4097 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_2 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.4097 units, provided that [tex]\( x_1 \)[/tex] remains constant.
## Part (b) Estimate [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex]
To estimate [tex]\( y \)[/tex] for [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex], we substitute these values into the regression equation:
[tex]\[ y = 29.1031 + 0.5549 \cdot 180 + 0.4097 \cdot 310 \][/tex]
Let's break down the computation step-by-step:
1. Calculate [tex]\( 0.5549 \cdot 180 \)[/tex]:
[tex]\[ 0.5549 \cdot 180 = 99.882 \][/tex]
2. Calculate [tex]\( 0.4097 \cdot 310 \)[/tex]:
[tex]\[ 0.4097 \cdot 310 = 126.007 \][/tex]
3. Add these values to the constant term [tex]\( 29.1031 \)[/tex]:
[tex]\[ y = 29.1031 + 99.882 + 126.007 \][/tex]
[tex]\[ y = 255.9921 \][/tex]
Thus, the estimated value of [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex] is:
[tex]\[ y \approx 255.992 \][/tex]
In the given regression equation [tex]\( y = 29.1031 + 0.5549 x_1 + 0.4097 x_2 \)[/tex]:
- [tex]\( b_1 = 0.5549 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_1 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.5549 units, provided that [tex]\( x_2 \)[/tex] remains constant.
- [tex]\( b_2 = 0.4097 \)[/tex]:
- This coefficient indicates that for every 1-unit increase in [tex]\( x_2 \)[/tex], the value of [tex]\( y \)[/tex] is expected to increase by 0.4097 units, provided that [tex]\( x_1 \)[/tex] remains constant.
## Part (b) Estimate [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex]
To estimate [tex]\( y \)[/tex] for [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex], we substitute these values into the regression equation:
[tex]\[ y = 29.1031 + 0.5549 \cdot 180 + 0.4097 \cdot 310 \][/tex]
Let's break down the computation step-by-step:
1. Calculate [tex]\( 0.5549 \cdot 180 \)[/tex]:
[tex]\[ 0.5549 \cdot 180 = 99.882 \][/tex]
2. Calculate [tex]\( 0.4097 \cdot 310 \)[/tex]:
[tex]\[ 0.4097 \cdot 310 = 126.007 \][/tex]
3. Add these values to the constant term [tex]\( 29.1031 \)[/tex]:
[tex]\[ y = 29.1031 + 99.882 + 126.007 \][/tex]
[tex]\[ y = 255.9921 \][/tex]
Thus, the estimated value of [tex]\( y \)[/tex] when [tex]\( x_1 = 180 \)[/tex] and [tex]\( x_2 = 310 \)[/tex] is:
[tex]\[ y \approx 255.992 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.