Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To estimate the mean lifetime of the light bulbs based on the given frequency distribution, we will follow these steps:
1. Identify the midpoints for each class interval: The midpoint of each class interval [tex]\((a, b)\)[/tex] is calculated using the formula:
[tex]\[ \text{midpoint} = \frac{a + b}{2} \][/tex]
2. Multiply each midpoint by its corresponding frequency: This helps to calculate the weighted contribution of each class interval to the overall mean.
3. Calculate the total frequency: This is the sum of all frequencies.
4. Calculate the sum of the products of midpoints and frequencies: This is done by summing up the values obtained from multiplying the midpoint by the frequency for each class interval.
5. Compute the mean: The mean lifetime is the ratio of the sum calculated in step 4 to the total frequency from step 3. The formula for the mean is:
[tex]\[ \text{mean} = \frac{\sum (\text{midpoint} \times \text{frequency})}{\text{total frequency}} \][/tex]
Now, let's apply these steps to the given data:
### Step 1: Calculate Midpoints
- For the interval 700 to 749:
[tex]\[ \text{midpoint} = \frac{700 + 749}{2} = 724.5 \][/tex]
- For the interval 750 to 799:
[tex]\[ \text{midpoint} = \frac{750 + 799}{2} = 774.5 \][/tex]
- For the interval 800 to 849:
[tex]\[ \text{midpoint} = \frac{800 + 849}{2} = 824.5 \][/tex]
- For the interval 850 to 899:
[tex]\[ \text{midpoint} = \frac{850 + 899}{2} = 874.5 \][/tex]
- For the interval 900 to 949:
[tex]\[ \text{midpoint} = \frac{900 + 949}{2} = 924.5 \][/tex]
- For the interval 950 to 999:
[tex]\[ \text{midpoint} = \frac{950 + 999}{2} = 974.5 \][/tex]
### Step 2: Multiply Midpoints by Corresponding Frequencies
- For [tex]\(724.5 \times 5 = 3622.5\)[/tex]
- For [tex]\(774.5 \times 8 = 6196.0\)[/tex]
- For [tex]\(824.5 \times 12 = 9894.0\)[/tex]
- For [tex]\(874.5 \times 9 = 7870.5\)[/tex]
- For [tex]\(924.5 \times 5 = 4622.5\)[/tex]
- For [tex]\(974.5 \times 4 = 3898.0\)[/tex]
### Step 3: Calculate the Total Frequency
[tex]\[ \text{Total frequency} = 5 + 8 + 12 + 9 + 5 + 4 = 43 \][/tex]
### Step 4: Calculate the Sum of the Products of Midpoints and Frequencies
[tex]\[ \text{Sum of products} = 3622.5 + 6196.0 + 9894.0 + 7870.5 + 4622.5 + 3898.0 = 36103.5 \][/tex]
### Step 5: Calculate the Mean
[tex]\[ \text{mean} = \frac{36103.5}{43} \approx 839.6 \][/tex]
### Conclusion
The estimated mean lifetime for the light bulbs in the company's test is [tex]\(839.6\)[/tex] hours.
1. Identify the midpoints for each class interval: The midpoint of each class interval [tex]\((a, b)\)[/tex] is calculated using the formula:
[tex]\[ \text{midpoint} = \frac{a + b}{2} \][/tex]
2. Multiply each midpoint by its corresponding frequency: This helps to calculate the weighted contribution of each class interval to the overall mean.
3. Calculate the total frequency: This is the sum of all frequencies.
4. Calculate the sum of the products of midpoints and frequencies: This is done by summing up the values obtained from multiplying the midpoint by the frequency for each class interval.
5. Compute the mean: The mean lifetime is the ratio of the sum calculated in step 4 to the total frequency from step 3. The formula for the mean is:
[tex]\[ \text{mean} = \frac{\sum (\text{midpoint} \times \text{frequency})}{\text{total frequency}} \][/tex]
Now, let's apply these steps to the given data:
### Step 1: Calculate Midpoints
- For the interval 700 to 749:
[tex]\[ \text{midpoint} = \frac{700 + 749}{2} = 724.5 \][/tex]
- For the interval 750 to 799:
[tex]\[ \text{midpoint} = \frac{750 + 799}{2} = 774.5 \][/tex]
- For the interval 800 to 849:
[tex]\[ \text{midpoint} = \frac{800 + 849}{2} = 824.5 \][/tex]
- For the interval 850 to 899:
[tex]\[ \text{midpoint} = \frac{850 + 899}{2} = 874.5 \][/tex]
- For the interval 900 to 949:
[tex]\[ \text{midpoint} = \frac{900 + 949}{2} = 924.5 \][/tex]
- For the interval 950 to 999:
[tex]\[ \text{midpoint} = \frac{950 + 999}{2} = 974.5 \][/tex]
### Step 2: Multiply Midpoints by Corresponding Frequencies
- For [tex]\(724.5 \times 5 = 3622.5\)[/tex]
- For [tex]\(774.5 \times 8 = 6196.0\)[/tex]
- For [tex]\(824.5 \times 12 = 9894.0\)[/tex]
- For [tex]\(874.5 \times 9 = 7870.5\)[/tex]
- For [tex]\(924.5 \times 5 = 4622.5\)[/tex]
- For [tex]\(974.5 \times 4 = 3898.0\)[/tex]
### Step 3: Calculate the Total Frequency
[tex]\[ \text{Total frequency} = 5 + 8 + 12 + 9 + 5 + 4 = 43 \][/tex]
### Step 4: Calculate the Sum of the Products of Midpoints and Frequencies
[tex]\[ \text{Sum of products} = 3622.5 + 6196.0 + 9894.0 + 7870.5 + 4622.5 + 3898.0 = 36103.5 \][/tex]
### Step 5: Calculate the Mean
[tex]\[ \text{mean} = \frac{36103.5}{43} \approx 839.6 \][/tex]
### Conclusion
The estimated mean lifetime for the light bulbs in the company's test is [tex]\(839.6\)[/tex] hours.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.