Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! To determine the degree of a polynomial, we look at each term separately and find the sum of the exponents for each variable within a term. The polynomial given is:
[tex]\[ 13x^7yz - 7x^5y^2 + x^4yz^3 \][/tex]
Let's break this down term by term:
1. First term: [tex]\( 13x^7yz \)[/tex]
- The degree of [tex]\( x \)[/tex] is 7.
- The degree of [tex]\( y \)[/tex] is 1.
- The degree of [tex]\( z \)[/tex] is 1.
- The sum of these degrees is [tex]\( 7 + 1 + 1 = 9 \)[/tex].
2. Second term: [tex]\( -7x^5y^2 \)[/tex]
- The degree of [tex]\( x \)[/tex] is 5.
- The degree of [tex]\( y \)[/tex] is 2.
- The degree of [tex]\( z \)[/tex] is 0 (since [tex]\( z \)[/tex] does not appear in this term).
- The sum of these degrees is [tex]\( 5 + 2 = 7 \)[/tex].
3. Third term: [tex]\( x^4yz^3 \)[/tex]
- The degree of [tex]\( x \)[/tex] is 4.
- The degree of [tex]\( y \)[/tex] is 1.
- The degree of [tex]\( z \)[/tex] is 3.
- The sum of these degrees is [tex]\( 4 + 1 + 3 = 8 \)[/tex].
Now, we need to find the degree of the entire polynomial, which is the highest degree among all its terms. Thus, we compare the degrees calculated:
- Degree of [tex]\( 13x^7yz \)[/tex] is 9.
- Degree of [tex]\( -7x^5y^2 \)[/tex] is 7.
- Degree of [tex]\( x^4yz^3 \)[/tex] is 8.
The highest degree is 9.
Therefore, the degree of the polynomial [tex]\( 13x^7yz - 7x^5y^2 + x^4yz^3 \)[/tex] is [tex]\( 9 \)[/tex].
[tex]\[ 13x^7yz - 7x^5y^2 + x^4yz^3 \][/tex]
Let's break this down term by term:
1. First term: [tex]\( 13x^7yz \)[/tex]
- The degree of [tex]\( x \)[/tex] is 7.
- The degree of [tex]\( y \)[/tex] is 1.
- The degree of [tex]\( z \)[/tex] is 1.
- The sum of these degrees is [tex]\( 7 + 1 + 1 = 9 \)[/tex].
2. Second term: [tex]\( -7x^5y^2 \)[/tex]
- The degree of [tex]\( x \)[/tex] is 5.
- The degree of [tex]\( y \)[/tex] is 2.
- The degree of [tex]\( z \)[/tex] is 0 (since [tex]\( z \)[/tex] does not appear in this term).
- The sum of these degrees is [tex]\( 5 + 2 = 7 \)[/tex].
3. Third term: [tex]\( x^4yz^3 \)[/tex]
- The degree of [tex]\( x \)[/tex] is 4.
- The degree of [tex]\( y \)[/tex] is 1.
- The degree of [tex]\( z \)[/tex] is 3.
- The sum of these degrees is [tex]\( 4 + 1 + 3 = 8 \)[/tex].
Now, we need to find the degree of the entire polynomial, which is the highest degree among all its terms. Thus, we compare the degrees calculated:
- Degree of [tex]\( 13x^7yz \)[/tex] is 9.
- Degree of [tex]\( -7x^5y^2 \)[/tex] is 7.
- Degree of [tex]\( x^4yz^3 \)[/tex] is 8.
The highest degree is 9.
Therefore, the degree of the polynomial [tex]\( 13x^7yz - 7x^5y^2 + x^4yz^3 \)[/tex] is [tex]\( 9 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.