Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To differentiate the function [tex]\( y = 7 \csc(x) + 8 \cos(x) \)[/tex], we'll take the derivative of each term separately using standard differentiation rules.
### Step-by-Step Solution
1. Differentiate the first term [tex]\( 7 \csc(x) \)[/tex]:
- The derivative of [tex]\( \csc(x) \)[/tex] is [tex]\( -\csc(x) \cot(x) \)[/tex].
- Applying the constant multiple rule, the derivative of [tex]\( 7 \csc(x) \)[/tex] is:
[tex]\[ 7 \cdot \left(-\csc(x) \cot(x)\right) = -7 \csc(x) \cot(x). \][/tex]
2. Differentiate the second term [tex]\( 8 \cos(x) \)[/tex]:
- The derivative of [tex]\( \cos(x) \)[/tex] is [tex]\( -\sin(x) \)[/tex].
- Applying the constant multiple rule, the derivative of [tex]\( 8 \cos(x) \)[/tex] is:
[tex]\[ 8 \cdot \left(-\sin(x)\right) = -8 \sin(x). \][/tex]
3. Combine the derivatives:
- Adding the derivatives from the two terms, we get:
[tex]\[ -7 \csc(x) \cot(x) - 8 \sin(x). \][/tex]
Thus, the derivative of the function [tex]\( y = 7 \csc(x) + 8 \cos(x) \)[/tex] is:
[tex]\[ \boxed{-7 \csc(x) \cot(x) - 8 \sin(x)}. \][/tex]
For convenience, and using trigonometric identities, we can also express this derivative in terms of simpler functions:
[tex]\[ -7 \csc(x) \cot(x) - 8 \sin(x). \][/tex]
Therefore, the final result is:
[tex]\[ \boxed{-8 \sin(x) - 7 \cot(x) \csc(x)}. \][/tex]
### Step-by-Step Solution
1. Differentiate the first term [tex]\( 7 \csc(x) \)[/tex]:
- The derivative of [tex]\( \csc(x) \)[/tex] is [tex]\( -\csc(x) \cot(x) \)[/tex].
- Applying the constant multiple rule, the derivative of [tex]\( 7 \csc(x) \)[/tex] is:
[tex]\[ 7 \cdot \left(-\csc(x) \cot(x)\right) = -7 \csc(x) \cot(x). \][/tex]
2. Differentiate the second term [tex]\( 8 \cos(x) \)[/tex]:
- The derivative of [tex]\( \cos(x) \)[/tex] is [tex]\( -\sin(x) \)[/tex].
- Applying the constant multiple rule, the derivative of [tex]\( 8 \cos(x) \)[/tex] is:
[tex]\[ 8 \cdot \left(-\sin(x)\right) = -8 \sin(x). \][/tex]
3. Combine the derivatives:
- Adding the derivatives from the two terms, we get:
[tex]\[ -7 \csc(x) \cot(x) - 8 \sin(x). \][/tex]
Thus, the derivative of the function [tex]\( y = 7 \csc(x) + 8 \cos(x) \)[/tex] is:
[tex]\[ \boxed{-7 \csc(x) \cot(x) - 8 \sin(x)}. \][/tex]
For convenience, and using trigonometric identities, we can also express this derivative in terms of simpler functions:
[tex]\[ -7 \csc(x) \cot(x) - 8 \sin(x). \][/tex]
Therefore, the final result is:
[tex]\[ \boxed{-8 \sin(x) - 7 \cot(x) \csc(x)}. \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.