Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Differentiate:

[tex]\[ y = \sec(\theta) \tan(\theta) \][/tex]


Sagot :

To differentiate the function [tex]\( y = \sec(\theta) \tan(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex], we can use the product rule. The product rule states that if we have a function [tex]\( y \)[/tex] which is the product of two functions [tex]\( u(\theta) \)[/tex] and [tex]\( v(\theta) \)[/tex], then the derivative of [tex]\( y \)[/tex] with respect to [tex]\( \theta \)[/tex] is given by:
[tex]\[ \frac{d}{d\theta}[u(\theta)v(\theta)] = u'(\theta)v(\theta) + u(\theta)v'(\theta) \][/tex]

For our function:
[tex]\[ y = \sec(\theta) \tan(\theta) \][/tex]
we will let
[tex]\[ u(\theta) = \sec(\theta) \quad \text{and} \quad v(\theta) = \tan(\theta) \][/tex]

First, let's find the derivatives [tex]\( u'(\theta) \)[/tex] and [tex]\( v'(\theta) \)[/tex].

1. The derivative of [tex]\( u(\theta) = \sec(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ u'(\theta) = \frac{d}{d\theta} \sec(\theta) = \sec(\theta) \tan(\theta) \][/tex]

2. The derivative of [tex]\( v(\theta) = \tan(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ v'(\theta) = \frac{d}{d\theta} \tan(\theta) = \sec^2(\theta) \][/tex]

Now, applying the product rule:
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = \sec(\theta) \tan(\theta) \cdot \tan(\theta) + \sec(\theta) \cdot \sec^2(\theta) \][/tex]
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = \sec(\theta) \tan^2(\theta) + \sec^3(\theta) \][/tex]

Next, let's express [tex]\( \sec^3(\theta) \)[/tex] in a way that incorporates simpler terms:
[tex]\[ \sec^3(\theta) = \sec(\theta) \cdot \sec^2(\theta) \][/tex]

Since [tex]\( \sec^2(\theta) = 1 + \tan^2(\theta) \)[/tex] (based on the trigonometric identity),
[tex]\[ \sec^3(\theta) = \sec(\theta) (1 + \tan^2(\theta)) \][/tex]
Therefore,
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) \left( 1 + \tan^2(\theta) \right) \][/tex]
Combine the terms:
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) + \sec(\theta) \tan^2(\theta) \][/tex]

Collecting like terms, we get:
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) \tan^2(\theta) + \sec(\theta) \][/tex]

Combining the common factors:
[tex]\[ (2 \tan^2(\theta) + 1) \sec(\theta) \][/tex]

Thus, the derivative of [tex]\( y = \sec(\theta) \tan(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex] is:
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = (\tan^2(\theta) + 1) \sec(\theta) + \tan^2(\theta) \sec(\theta) \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.