Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To differentiate the function [tex]\( y = \sec(\theta) \tan(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex], we can use the product rule. The product rule states that if we have a function [tex]\( y \)[/tex] which is the product of two functions [tex]\( u(\theta) \)[/tex] and [tex]\( v(\theta) \)[/tex], then the derivative of [tex]\( y \)[/tex] with respect to [tex]\( \theta \)[/tex] is given by:
[tex]\[ \frac{d}{d\theta}[u(\theta)v(\theta)] = u'(\theta)v(\theta) + u(\theta)v'(\theta) \][/tex]
For our function:
[tex]\[ y = \sec(\theta) \tan(\theta) \][/tex]
we will let
[tex]\[ u(\theta) = \sec(\theta) \quad \text{and} \quad v(\theta) = \tan(\theta) \][/tex]
First, let's find the derivatives [tex]\( u'(\theta) \)[/tex] and [tex]\( v'(\theta) \)[/tex].
1. The derivative of [tex]\( u(\theta) = \sec(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ u'(\theta) = \frac{d}{d\theta} \sec(\theta) = \sec(\theta) \tan(\theta) \][/tex]
2. The derivative of [tex]\( v(\theta) = \tan(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ v'(\theta) = \frac{d}{d\theta} \tan(\theta) = \sec^2(\theta) \][/tex]
Now, applying the product rule:
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = \sec(\theta) \tan(\theta) \cdot \tan(\theta) + \sec(\theta) \cdot \sec^2(\theta) \][/tex]
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = \sec(\theta) \tan^2(\theta) + \sec^3(\theta) \][/tex]
Next, let's express [tex]\( \sec^3(\theta) \)[/tex] in a way that incorporates simpler terms:
[tex]\[ \sec^3(\theta) = \sec(\theta) \cdot \sec^2(\theta) \][/tex]
Since [tex]\( \sec^2(\theta) = 1 + \tan^2(\theta) \)[/tex] (based on the trigonometric identity),
[tex]\[ \sec^3(\theta) = \sec(\theta) (1 + \tan^2(\theta)) \][/tex]
Therefore,
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) \left( 1 + \tan^2(\theta) \right) \][/tex]
Combine the terms:
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) + \sec(\theta) \tan^2(\theta) \][/tex]
Collecting like terms, we get:
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) \tan^2(\theta) + \sec(\theta) \][/tex]
Combining the common factors:
[tex]\[ (2 \tan^2(\theta) + 1) \sec(\theta) \][/tex]
Thus, the derivative of [tex]\( y = \sec(\theta) \tan(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex] is:
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = (\tan^2(\theta) + 1) \sec(\theta) + \tan^2(\theta) \sec(\theta) \][/tex]
[tex]\[ \frac{d}{d\theta}[u(\theta)v(\theta)] = u'(\theta)v(\theta) + u(\theta)v'(\theta) \][/tex]
For our function:
[tex]\[ y = \sec(\theta) \tan(\theta) \][/tex]
we will let
[tex]\[ u(\theta) = \sec(\theta) \quad \text{and} \quad v(\theta) = \tan(\theta) \][/tex]
First, let's find the derivatives [tex]\( u'(\theta) \)[/tex] and [tex]\( v'(\theta) \)[/tex].
1. The derivative of [tex]\( u(\theta) = \sec(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ u'(\theta) = \frac{d}{d\theta} \sec(\theta) = \sec(\theta) \tan(\theta) \][/tex]
2. The derivative of [tex]\( v(\theta) = \tan(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex]:
[tex]\[ v'(\theta) = \frac{d}{d\theta} \tan(\theta) = \sec^2(\theta) \][/tex]
Now, applying the product rule:
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = \sec(\theta) \tan(\theta) \cdot \tan(\theta) + \sec(\theta) \cdot \sec^2(\theta) \][/tex]
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = \sec(\theta) \tan^2(\theta) + \sec^3(\theta) \][/tex]
Next, let's express [tex]\( \sec^3(\theta) \)[/tex] in a way that incorporates simpler terms:
[tex]\[ \sec^3(\theta) = \sec(\theta) \cdot \sec^2(\theta) \][/tex]
Since [tex]\( \sec^2(\theta) = 1 + \tan^2(\theta) \)[/tex] (based on the trigonometric identity),
[tex]\[ \sec^3(\theta) = \sec(\theta) (1 + \tan^2(\theta)) \][/tex]
Therefore,
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) \left( 1 + \tan^2(\theta) \right) \][/tex]
Combine the terms:
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) + \sec(\theta) \tan^2(\theta) \][/tex]
Collecting like terms, we get:
[tex]\[ \sec(\theta) \tan^2(\theta) + \sec(\theta) \tan^2(\theta) + \sec(\theta) \][/tex]
Combining the common factors:
[tex]\[ (2 \tan^2(\theta) + 1) \sec(\theta) \][/tex]
Thus, the derivative of [tex]\( y = \sec(\theta) \tan(\theta) \)[/tex] with respect to [tex]\( \theta \)[/tex] is:
[tex]\[ \frac{d}{d\theta} \left[ \sec(\theta) \tan(\theta) \right] = (\tan^2(\theta) + 1) \sec(\theta) + \tan^2(\theta) \sec(\theta) \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.