Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To calculate the future value of an investment with the given parameters, we need to use the formula for compound interest. The formula to calculate the future value [tex]\( A \)[/tex] is given by:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{n \cdot t} \][/tex]
Here's a detailed step-by-step solution using the given values:
1. Identify the given values:
- Principal amount ([tex]\( P \)[/tex]) = \[tex]$21,000 - Annual interest rate (\( r \)) = 7\% or 0.07 (as a decimal) - Number of times the interest is compounded per year (\( n \)) = 12 (monthly) - Number of years (\( t \)) = 5 2. Plug the values into the formula: \[ A = 21,000 \left(1 + \frac{0.07}{12}\right)^{12 \cdot 5} \] 3. Calculate the periodic interest rate (\( \frac{r}{n} \)): \[ \frac{0.07}{12} \approx 0.0058333333 \] 4. Add the periodic interest rate to 1: \[ 1 + 0.0058333333 \approx 1.0058333333 \] 5. Calculate the exponent (\( n \cdot t \)): \[ 12 \cdot 5 = 60 \] 6. Raise the base to the power of the exponent: \[ (1.0058333333)^{60} \approx 1.41758 \] 7. Multiply the principal amount by the result from the previous step: \[ 21,000 \cdot 1.41758 \approx 29770.1358 \] 8. Round the final answer to two decimal places: \[ 29770.1358 \approx 29770.13 \] Therefore, the future value of the investment is \$[/tex]29,770.13.
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{n \cdot t} \][/tex]
Here's a detailed step-by-step solution using the given values:
1. Identify the given values:
- Principal amount ([tex]\( P \)[/tex]) = \[tex]$21,000 - Annual interest rate (\( r \)) = 7\% or 0.07 (as a decimal) - Number of times the interest is compounded per year (\( n \)) = 12 (monthly) - Number of years (\( t \)) = 5 2. Plug the values into the formula: \[ A = 21,000 \left(1 + \frac{0.07}{12}\right)^{12 \cdot 5} \] 3. Calculate the periodic interest rate (\( \frac{r}{n} \)): \[ \frac{0.07}{12} \approx 0.0058333333 \] 4. Add the periodic interest rate to 1: \[ 1 + 0.0058333333 \approx 1.0058333333 \] 5. Calculate the exponent (\( n \cdot t \)): \[ 12 \cdot 5 = 60 \] 6. Raise the base to the power of the exponent: \[ (1.0058333333)^{60} \approx 1.41758 \] 7. Multiply the principal amount by the result from the previous step: \[ 21,000 \cdot 1.41758 \approx 29770.1358 \] 8. Round the final answer to two decimal places: \[ 29770.1358 \approx 29770.13 \] Therefore, the future value of the investment is \$[/tex]29,770.13.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.