At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the polynomial equation [tex]\(x^4 - 4x^2 + 3 = 0\)[/tex], we can start by making a substitution to simplify the equation. Let's set [tex]\(y = x^2\)[/tex]. This transforms our original equation into a quadratic equation in terms of [tex]\(y\)[/tex]:
[tex]\[ y^2 - 4y + 3 = 0 \][/tex]
Next, we solve this quadratic equation for [tex]\(y\)[/tex]. The standard form of a quadratic equation is [tex]\(ay^2 + by + c = 0\)[/tex]. In our case, [tex]\(a = 1\)[/tex], [tex]\(b = -4\)[/tex], and [tex]\(c = 3\)[/tex]. We can find the solutions using the quadratic formula [tex]\(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ y = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(3)}}{2(1)} \][/tex]
[tex]\[ y = \frac{4 \pm \sqrt{16 - 12}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm \sqrt{4}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm 2}{2} \][/tex]
This gives us two solutions for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{4 + 2}{2} = 3 \quad \text{and} \quad y = \frac{4 - 2}{2} = 1 \][/tex]
Now, recall our substitution [tex]\(y = x^2\)[/tex]. We have [tex]\(x^2 = 3\)[/tex] and [tex]\(x^2 = 1\)[/tex]. We solve these equations to find [tex]\(x\)[/tex]:
For [tex]\(x^2 = 3\)[/tex]:
[tex]\[ x = \pm \sqrt{3} \][/tex]
For [tex]\(x^2 = 1\)[/tex]:
[tex]\[ x = \pm 1 \][/tex]
Thus, the complete set of solutions for the original equation [tex]\(x^4 - 4x^2 + 3 = 0\)[/tex] is:
[tex]\[ x = -\sqrt{3}, -1, 1, \sqrt{3} \][/tex]
[tex]\[ y^2 - 4y + 3 = 0 \][/tex]
Next, we solve this quadratic equation for [tex]\(y\)[/tex]. The standard form of a quadratic equation is [tex]\(ay^2 + by + c = 0\)[/tex]. In our case, [tex]\(a = 1\)[/tex], [tex]\(b = -4\)[/tex], and [tex]\(c = 3\)[/tex]. We can find the solutions using the quadratic formula [tex]\(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ y = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(3)}}{2(1)} \][/tex]
[tex]\[ y = \frac{4 \pm \sqrt{16 - 12}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm \sqrt{4}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm 2}{2} \][/tex]
This gives us two solutions for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{4 + 2}{2} = 3 \quad \text{and} \quad y = \frac{4 - 2}{2} = 1 \][/tex]
Now, recall our substitution [tex]\(y = x^2\)[/tex]. We have [tex]\(x^2 = 3\)[/tex] and [tex]\(x^2 = 1\)[/tex]. We solve these equations to find [tex]\(x\)[/tex]:
For [tex]\(x^2 = 3\)[/tex]:
[tex]\[ x = \pm \sqrt{3} \][/tex]
For [tex]\(x^2 = 1\)[/tex]:
[tex]\[ x = \pm 1 \][/tex]
Thus, the complete set of solutions for the original equation [tex]\(x^4 - 4x^2 + 3 = 0\)[/tex] is:
[tex]\[ x = -\sqrt{3}, -1, 1, \sqrt{3} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.