At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the area of the shaded region, we need to follow a few distinct steps: calculating the area of the regular hexagon, the area of the inscribed circle, and then finding the difference between these two areas.
### 1. Determine the Area of the Regular Hexagon
A regular hexagon with side length [tex]\( s \)[/tex] can be divided into 6 equilateral triangles. The area [tex]\( A \)[/tex] of a regular hexagon with side length [tex]\( s \)[/tex] is given by:
[tex]\[ A = \frac{3\sqrt{3}}{2}s^2 \][/tex]
Plugging in [tex]\( s = 10 \)[/tex] feet:
[tex]\[ A = \frac{3\sqrt{3}}{2} \cdot 10^2 = \frac{3\sqrt{3}}{2} \cdot 100 = 150\sqrt{3} \text{ square feet} \][/tex]
### 2. Determine the Radius of the Inscribed Circle
The radius of the inscribed circle in a regular hexagon is the same as the height of one of the equilateral triangles formed in step 1. In a [tex]\( 30^\circ - 60^\circ - 90^\circ \)[/tex] triangle, the relationship between sides is as follows:
- The shortest leg (half the length of a side of the equilateral triangle) is [tex]\( x \)[/tex].
- The longest leg (the height) is [tex]\( x\sqrt{3} \)[/tex].
- The hypotenuse (side length of the hexagon) is [tex]\( 2x \)[/tex].
Thus, for our triangle, where the side (hypotenuse) is 10 feet,
[tex]\[ 10 = 2x \implies x = 5 \text{ feet (half the side length)} \][/tex]
The height (and hence the radius [tex]\( r \)[/tex] of the inscribed circle) is:
[tex]\[ r = x\sqrt{3} = 5\sqrt{3} \text{ feet} \][/tex]
### 3. Determine the Area of the Inscribed Circle
The area [tex]\( A_c \)[/tex] of a circle is given by:
[tex]\[ A_c = \pi r^2 \][/tex]
With the radius [tex]\( r = 5\sqrt{3} \)[/tex] feet:
[tex]\[ A_c = \pi (5\sqrt{3})^2 = 75\pi \text{ square feet} \][/tex]
### 4. Determine the Area of the Shaded Region
The shaded region is the difference between the area of the hexagon and the area of the inscribed circle:
[tex]\[ \text{Shaded Area} = A_{\text{hexagon}} - A_{c} \][/tex]
[tex]\[ \text{Shaded Area} = 150\sqrt{3} - 75\pi \text{ square feet} \][/tex]
Hence, the area of the shaded region, which matches one of the provided choices, is:
[tex]\[ 150\sqrt{3} - 75\pi \text{ square feet} \][/tex]
### 1. Determine the Area of the Regular Hexagon
A regular hexagon with side length [tex]\( s \)[/tex] can be divided into 6 equilateral triangles. The area [tex]\( A \)[/tex] of a regular hexagon with side length [tex]\( s \)[/tex] is given by:
[tex]\[ A = \frac{3\sqrt{3}}{2}s^2 \][/tex]
Plugging in [tex]\( s = 10 \)[/tex] feet:
[tex]\[ A = \frac{3\sqrt{3}}{2} \cdot 10^2 = \frac{3\sqrt{3}}{2} \cdot 100 = 150\sqrt{3} \text{ square feet} \][/tex]
### 2. Determine the Radius of the Inscribed Circle
The radius of the inscribed circle in a regular hexagon is the same as the height of one of the equilateral triangles formed in step 1. In a [tex]\( 30^\circ - 60^\circ - 90^\circ \)[/tex] triangle, the relationship between sides is as follows:
- The shortest leg (half the length of a side of the equilateral triangle) is [tex]\( x \)[/tex].
- The longest leg (the height) is [tex]\( x\sqrt{3} \)[/tex].
- The hypotenuse (side length of the hexagon) is [tex]\( 2x \)[/tex].
Thus, for our triangle, where the side (hypotenuse) is 10 feet,
[tex]\[ 10 = 2x \implies x = 5 \text{ feet (half the side length)} \][/tex]
The height (and hence the radius [tex]\( r \)[/tex] of the inscribed circle) is:
[tex]\[ r = x\sqrt{3} = 5\sqrt{3} \text{ feet} \][/tex]
### 3. Determine the Area of the Inscribed Circle
The area [tex]\( A_c \)[/tex] of a circle is given by:
[tex]\[ A_c = \pi r^2 \][/tex]
With the radius [tex]\( r = 5\sqrt{3} \)[/tex] feet:
[tex]\[ A_c = \pi (5\sqrt{3})^2 = 75\pi \text{ square feet} \][/tex]
### 4. Determine the Area of the Shaded Region
The shaded region is the difference between the area of the hexagon and the area of the inscribed circle:
[tex]\[ \text{Shaded Area} = A_{\text{hexagon}} - A_{c} \][/tex]
[tex]\[ \text{Shaded Area} = 150\sqrt{3} - 75\pi \text{ square feet} \][/tex]
Hence, the area of the shaded region, which matches one of the provided choices, is:
[tex]\[ 150\sqrt{3} - 75\pi \text{ square feet} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.