Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the problem, let's break it down into several key steps:
1. Determine the radius of the inscribed circle:
The radius of the inscribed circle of a regular hexagon can be found by considering a 30-60-90 triangle that is formed by splitting one of the equilateral triangles within the hexagon.
In a 30-60-90 triangle, we know:
- The shortest leg (half the side length of the equilateral triangle) is [tex]\( x = \frac{10}{2} = 5 \)[/tex] feet.
- The longer leg (which is the height of the equilateral triangle and also the radius [tex]\( r \)[/tex]) is [tex]\( x \sqrt{3} = 5 \sqrt{3} \)[/tex] feet.
Therefore, the radius [tex]\( r \)[/tex] of the circle is:
[tex]\[ r = 5 \sqrt{3} \text{ feet} \][/tex]
2. Calculate the area of the regular hexagon:
The area [tex]\( A_h \)[/tex] of a regular hexagon with side length [tex]\( s \)[/tex] can be calculated using the formula:
[tex]\[ A_h = \frac{3 \sqrt{3}}{2} s^2 \][/tex]
Given [tex]\( s = 10 \)[/tex] feet, we get:
[tex]\[ A_h = \frac{3 \sqrt{3}}{2} \times 10^2 = \frac{3 \sqrt{3}}{2} \times 100 = 150 \sqrt{3} \text{ square feet} \][/tex]
3. Calculate the area of the inscribed circle:
The area [tex]\( A_c \)[/tex] of a circle with radius [tex]\( r \)[/tex] is given by:
[tex]\[ A_c = \pi r^2 \][/tex]
Since [tex]\( r = 5 \sqrt{3} \)[/tex] feet, we get:
[tex]\[ A_c = \pi (5 \sqrt{3})^2 = \pi \times 25 \times 3 = 75 \pi \text{ square feet} \][/tex]
4. Find the area of the shaded region:
The area of the shaded region [tex]\( A_s \)[/tex] is the area of the hexagon minus the area of the circle:
[tex]\[ A_s = A_h - A_c = 150 \sqrt{3} - 75 \pi \text{ square feet} \][/tex]
Given the problem and the answer choices, the answer corresponding to:
[tex]\[ (150 \sqrt{3} - 75 \pi) \pi^2 \][/tex]
Therefore, the correct answer is:
[tex]\[ 150 \sqrt{3} - 75 \pi \][/tex]
1. Determine the radius of the inscribed circle:
The radius of the inscribed circle of a regular hexagon can be found by considering a 30-60-90 triangle that is formed by splitting one of the equilateral triangles within the hexagon.
In a 30-60-90 triangle, we know:
- The shortest leg (half the side length of the equilateral triangle) is [tex]\( x = \frac{10}{2} = 5 \)[/tex] feet.
- The longer leg (which is the height of the equilateral triangle and also the radius [tex]\( r \)[/tex]) is [tex]\( x \sqrt{3} = 5 \sqrt{3} \)[/tex] feet.
Therefore, the radius [tex]\( r \)[/tex] of the circle is:
[tex]\[ r = 5 \sqrt{3} \text{ feet} \][/tex]
2. Calculate the area of the regular hexagon:
The area [tex]\( A_h \)[/tex] of a regular hexagon with side length [tex]\( s \)[/tex] can be calculated using the formula:
[tex]\[ A_h = \frac{3 \sqrt{3}}{2} s^2 \][/tex]
Given [tex]\( s = 10 \)[/tex] feet, we get:
[tex]\[ A_h = \frac{3 \sqrt{3}}{2} \times 10^2 = \frac{3 \sqrt{3}}{2} \times 100 = 150 \sqrt{3} \text{ square feet} \][/tex]
3. Calculate the area of the inscribed circle:
The area [tex]\( A_c \)[/tex] of a circle with radius [tex]\( r \)[/tex] is given by:
[tex]\[ A_c = \pi r^2 \][/tex]
Since [tex]\( r = 5 \sqrt{3} \)[/tex] feet, we get:
[tex]\[ A_c = \pi (5 \sqrt{3})^2 = \pi \times 25 \times 3 = 75 \pi \text{ square feet} \][/tex]
4. Find the area of the shaded region:
The area of the shaded region [tex]\( A_s \)[/tex] is the area of the hexagon minus the area of the circle:
[tex]\[ A_s = A_h - A_c = 150 \sqrt{3} - 75 \pi \text{ square feet} \][/tex]
Given the problem and the answer choices, the answer corresponding to:
[tex]\[ (150 \sqrt{3} - 75 \pi) \pi^2 \][/tex]
Therefore, the correct answer is:
[tex]\[ 150 \sqrt{3} - 75 \pi \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.