At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem, let's break it down into several key steps:
1. Determine the radius of the inscribed circle:
The radius of the inscribed circle of a regular hexagon can be found by considering a 30-60-90 triangle that is formed by splitting one of the equilateral triangles within the hexagon.
In a 30-60-90 triangle, we know:
- The shortest leg (half the side length of the equilateral triangle) is [tex]\( x = \frac{10}{2} = 5 \)[/tex] feet.
- The longer leg (which is the height of the equilateral triangle and also the radius [tex]\( r \)[/tex]) is [tex]\( x \sqrt{3} = 5 \sqrt{3} \)[/tex] feet.
Therefore, the radius [tex]\( r \)[/tex] of the circle is:
[tex]\[ r = 5 \sqrt{3} \text{ feet} \][/tex]
2. Calculate the area of the regular hexagon:
The area [tex]\( A_h \)[/tex] of a regular hexagon with side length [tex]\( s \)[/tex] can be calculated using the formula:
[tex]\[ A_h = \frac{3 \sqrt{3}}{2} s^2 \][/tex]
Given [tex]\( s = 10 \)[/tex] feet, we get:
[tex]\[ A_h = \frac{3 \sqrt{3}}{2} \times 10^2 = \frac{3 \sqrt{3}}{2} \times 100 = 150 \sqrt{3} \text{ square feet} \][/tex]
3. Calculate the area of the inscribed circle:
The area [tex]\( A_c \)[/tex] of a circle with radius [tex]\( r \)[/tex] is given by:
[tex]\[ A_c = \pi r^2 \][/tex]
Since [tex]\( r = 5 \sqrt{3} \)[/tex] feet, we get:
[tex]\[ A_c = \pi (5 \sqrt{3})^2 = \pi \times 25 \times 3 = 75 \pi \text{ square feet} \][/tex]
4. Find the area of the shaded region:
The area of the shaded region [tex]\( A_s \)[/tex] is the area of the hexagon minus the area of the circle:
[tex]\[ A_s = A_h - A_c = 150 \sqrt{3} - 75 \pi \text{ square feet} \][/tex]
Given the problem and the answer choices, the answer corresponding to:
[tex]\[ (150 \sqrt{3} - 75 \pi) \pi^2 \][/tex]
Therefore, the correct answer is:
[tex]\[ 150 \sqrt{3} - 75 \pi \][/tex]
1. Determine the radius of the inscribed circle:
The radius of the inscribed circle of a regular hexagon can be found by considering a 30-60-90 triangle that is formed by splitting one of the equilateral triangles within the hexagon.
In a 30-60-90 triangle, we know:
- The shortest leg (half the side length of the equilateral triangle) is [tex]\( x = \frac{10}{2} = 5 \)[/tex] feet.
- The longer leg (which is the height of the equilateral triangle and also the radius [tex]\( r \)[/tex]) is [tex]\( x \sqrt{3} = 5 \sqrt{3} \)[/tex] feet.
Therefore, the radius [tex]\( r \)[/tex] of the circle is:
[tex]\[ r = 5 \sqrt{3} \text{ feet} \][/tex]
2. Calculate the area of the regular hexagon:
The area [tex]\( A_h \)[/tex] of a regular hexagon with side length [tex]\( s \)[/tex] can be calculated using the formula:
[tex]\[ A_h = \frac{3 \sqrt{3}}{2} s^2 \][/tex]
Given [tex]\( s = 10 \)[/tex] feet, we get:
[tex]\[ A_h = \frac{3 \sqrt{3}}{2} \times 10^2 = \frac{3 \sqrt{3}}{2} \times 100 = 150 \sqrt{3} \text{ square feet} \][/tex]
3. Calculate the area of the inscribed circle:
The area [tex]\( A_c \)[/tex] of a circle with radius [tex]\( r \)[/tex] is given by:
[tex]\[ A_c = \pi r^2 \][/tex]
Since [tex]\( r = 5 \sqrt{3} \)[/tex] feet, we get:
[tex]\[ A_c = \pi (5 \sqrt{3})^2 = \pi \times 25 \times 3 = 75 \pi \text{ square feet} \][/tex]
4. Find the area of the shaded region:
The area of the shaded region [tex]\( A_s \)[/tex] is the area of the hexagon minus the area of the circle:
[tex]\[ A_s = A_h - A_c = 150 \sqrt{3} - 75 \pi \text{ square feet} \][/tex]
Given the problem and the answer choices, the answer corresponding to:
[tex]\[ (150 \sqrt{3} - 75 \pi) \pi^2 \][/tex]
Therefore, the correct answer is:
[tex]\[ 150 \sqrt{3} - 75 \pi \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.