At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let’s break down the problem step by step and find the required values.
### Step 1: Calculate the Slope of Line Segment [tex]\(\overline{WX}\)[/tex]
Given the coordinates:
- Point [tex]\(W\)[/tex] is at [tex]\((3, 2)\)[/tex]
- Point [tex]\(X\)[/tex] is at [tex]\((7, 5)\)[/tex]
The formula to calculate the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the coordinates [tex]\((3, 2)\)[/tex] and [tex]\((7, 5)\)[/tex]:
[tex]\[ \text{slope} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
So, the slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
### Step 2: Calculate the Length of Line Segment [tex]\(\overline{WX}\)[/tex]
The formula to calculate the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using the coordinates [tex]\((3, 2)\)[/tex] and [tex]\((7, 5)\)[/tex]:
[tex]\[ \text{distance} = \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
So, the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(5\)[/tex].
### Step 3: Dilation of the Polygon
The dilation scale factor is [tex]\(3\)[/tex]. This means that the new length of [tex]\(\overline{WX}\)[/tex] after dilation will be three times the original length:
[tex]\[ \text{New length} = 5 \times 3 = 15 \][/tex]
### Selecting the Correct Statement
Let's evaluate the given statements based on our findings:
A. The slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(5\)[/tex].
True: The slope is [tex]\(\frac{3}{4}\)[/tex] and the original length is [tex]\(5\)[/tex].
B. The slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(15\)[/tex].
False: The length after dilation is [tex]\(15\)[/tex], but the original length is [tex]\(5\)[/tex].
C. The slope of [tex]\(\overline{Wx}\)[/tex] is [tex]\(\frac{8}{4}\)[/tex], and the length of [tex]\(\overline{Wx}\)[/tex] is [tex]\(15\)[/tex].
False: The slope is incorrect (it should be [tex]\(\frac{3}{4}\)[/tex]). Also, the length mentioned is the length after dilation, not the original length.
D. The slope of [tex]\(\overline{Wx}\)[/tex] is [tex]\(\frac{9}{4}\)[/tex], and the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(5\)[/tex].
False: Both the slope and length are incorrect. The slope should be [tex]\(\frac{3}{4}\)[/tex] and the original length is [tex]\(5\)[/tex].
Therefore, the correct statement is:
A. The slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(5\)[/tex].
### Step 1: Calculate the Slope of Line Segment [tex]\(\overline{WX}\)[/tex]
Given the coordinates:
- Point [tex]\(W\)[/tex] is at [tex]\((3, 2)\)[/tex]
- Point [tex]\(X\)[/tex] is at [tex]\((7, 5)\)[/tex]
The formula to calculate the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the coordinates [tex]\((3, 2)\)[/tex] and [tex]\((7, 5)\)[/tex]:
[tex]\[ \text{slope} = \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
So, the slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
### Step 2: Calculate the Length of Line Segment [tex]\(\overline{WX}\)[/tex]
The formula to calculate the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using the coordinates [tex]\((3, 2)\)[/tex] and [tex]\((7, 5)\)[/tex]:
[tex]\[ \text{distance} = \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
So, the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(5\)[/tex].
### Step 3: Dilation of the Polygon
The dilation scale factor is [tex]\(3\)[/tex]. This means that the new length of [tex]\(\overline{WX}\)[/tex] after dilation will be three times the original length:
[tex]\[ \text{New length} = 5 \times 3 = 15 \][/tex]
### Selecting the Correct Statement
Let's evaluate the given statements based on our findings:
A. The slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(5\)[/tex].
True: The slope is [tex]\(\frac{3}{4}\)[/tex] and the original length is [tex]\(5\)[/tex].
B. The slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(15\)[/tex].
False: The length after dilation is [tex]\(15\)[/tex], but the original length is [tex]\(5\)[/tex].
C. The slope of [tex]\(\overline{Wx}\)[/tex] is [tex]\(\frac{8}{4}\)[/tex], and the length of [tex]\(\overline{Wx}\)[/tex] is [tex]\(15\)[/tex].
False: The slope is incorrect (it should be [tex]\(\frac{3}{4}\)[/tex]). Also, the length mentioned is the length after dilation, not the original length.
D. The slope of [tex]\(\overline{Wx}\)[/tex] is [tex]\(\frac{9}{4}\)[/tex], and the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(5\)[/tex].
False: Both the slope and length are incorrect. The slope should be [tex]\(\frac{3}{4}\)[/tex] and the original length is [tex]\(5\)[/tex].
Therefore, the correct statement is:
A. The slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{WX}\)[/tex] is [tex]\(5\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.