At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's go through the solution step-by-step. Given the probability distribution of the number of cars per household in a town of 1000 households:
[tex]\[ \begin{array}{|c|c|} \hline \text{Cars} & \text{Households} \\ \hline 0 & 125 \\ \hline 1 & 428 \\ \hline 2 & 256 \\ \hline 3 & 108 \\ \hline 4 & 83 \\ \hline \end{array} \][/tex]
a) To find the probability of randomly selecting a household that has less than two cars:
1. Identify the number of households with less than two cars. This includes households with 0 cars and 1 car.
2. Sum these households: [tex]\( 125 + 428 = 553 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(x < 2) = \frac{125 + 428}{1000} = \frac{553}{1000} = 0.553 \][/tex]
Therefore, [tex]\( P(x < 2) = 0.553 \)[/tex].
b) To find the probability of randomly selecting a household that has at least one car:
1. Identify the number of households with at least one car. This includes households with 1, 2, 3, or 4 cars.
2. Sum these households: [tex]\( 428 + 256 + 108 + 83 = 875 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(x \geq 1) = \frac{428 + 256 + 108 + 83}{1000} = \frac{875}{1000} = 0.875 \][/tex]
Therefore, [tex]\( P(x \geq 1) = 0.875 \)[/tex].
c) To find the probability of randomly selecting a household that has between one and three cars, inclusive:
1. Identify the number of households with between one and three cars. This includes households with 1, 2, or 3 cars.
2. Sum these households: [tex]\( 428 + 256 + 108 = 792 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(1 \leq x \leq 3) = \frac{428 + 256 + 108}{1000} = \frac{792}{1000} = 0.792 \][/tex]
Therefore, [tex]\( P(1 \leq x \leq 3) = 0.792 \)[/tex].
So the results are:
a) [tex]\( P(x < 2) = 0.553 \)[/tex]
b) [tex]\( P(x \geq 1) = 0.875 \)[/tex]
c) [tex]\( P(1 \leq x \leq 3) = 0.792 \)[/tex]
[tex]\[ \begin{array}{|c|c|} \hline \text{Cars} & \text{Households} \\ \hline 0 & 125 \\ \hline 1 & 428 \\ \hline 2 & 256 \\ \hline 3 & 108 \\ \hline 4 & 83 \\ \hline \end{array} \][/tex]
a) To find the probability of randomly selecting a household that has less than two cars:
1. Identify the number of households with less than two cars. This includes households with 0 cars and 1 car.
2. Sum these households: [tex]\( 125 + 428 = 553 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(x < 2) = \frac{125 + 428}{1000} = \frac{553}{1000} = 0.553 \][/tex]
Therefore, [tex]\( P(x < 2) = 0.553 \)[/tex].
b) To find the probability of randomly selecting a household that has at least one car:
1. Identify the number of households with at least one car. This includes households with 1, 2, 3, or 4 cars.
2. Sum these households: [tex]\( 428 + 256 + 108 + 83 = 875 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(x \geq 1) = \frac{428 + 256 + 108 + 83}{1000} = \frac{875}{1000} = 0.875 \][/tex]
Therefore, [tex]\( P(x \geq 1) = 0.875 \)[/tex].
c) To find the probability of randomly selecting a household that has between one and three cars, inclusive:
1. Identify the number of households with between one and three cars. This includes households with 1, 2, or 3 cars.
2. Sum these households: [tex]\( 428 + 256 + 108 = 792 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(1 \leq x \leq 3) = \frac{428 + 256 + 108}{1000} = \frac{792}{1000} = 0.792 \][/tex]
Therefore, [tex]\( P(1 \leq x \leq 3) = 0.792 \)[/tex].
So the results are:
a) [tex]\( P(x < 2) = 0.553 \)[/tex]
b) [tex]\( P(x \geq 1) = 0.875 \)[/tex]
c) [tex]\( P(1 \leq x \leq 3) = 0.792 \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.