Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's go through the solution step-by-step. Given the probability distribution of the number of cars per household in a town of 1000 households:
[tex]\[ \begin{array}{|c|c|} \hline \text{Cars} & \text{Households} \\ \hline 0 & 125 \\ \hline 1 & 428 \\ \hline 2 & 256 \\ \hline 3 & 108 \\ \hline 4 & 83 \\ \hline \end{array} \][/tex]
a) To find the probability of randomly selecting a household that has less than two cars:
1. Identify the number of households with less than two cars. This includes households with 0 cars and 1 car.
2. Sum these households: [tex]\( 125 + 428 = 553 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(x < 2) = \frac{125 + 428}{1000} = \frac{553}{1000} = 0.553 \][/tex]
Therefore, [tex]\( P(x < 2) = 0.553 \)[/tex].
b) To find the probability of randomly selecting a household that has at least one car:
1. Identify the number of households with at least one car. This includes households with 1, 2, 3, or 4 cars.
2. Sum these households: [tex]\( 428 + 256 + 108 + 83 = 875 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(x \geq 1) = \frac{428 + 256 + 108 + 83}{1000} = \frac{875}{1000} = 0.875 \][/tex]
Therefore, [tex]\( P(x \geq 1) = 0.875 \)[/tex].
c) To find the probability of randomly selecting a household that has between one and three cars, inclusive:
1. Identify the number of households with between one and three cars. This includes households with 1, 2, or 3 cars.
2. Sum these households: [tex]\( 428 + 256 + 108 = 792 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(1 \leq x \leq 3) = \frac{428 + 256 + 108}{1000} = \frac{792}{1000} = 0.792 \][/tex]
Therefore, [tex]\( P(1 \leq x \leq 3) = 0.792 \)[/tex].
So the results are:
a) [tex]\( P(x < 2) = 0.553 \)[/tex]
b) [tex]\( P(x \geq 1) = 0.875 \)[/tex]
c) [tex]\( P(1 \leq x \leq 3) = 0.792 \)[/tex]
[tex]\[ \begin{array}{|c|c|} \hline \text{Cars} & \text{Households} \\ \hline 0 & 125 \\ \hline 1 & 428 \\ \hline 2 & 256 \\ \hline 3 & 108 \\ \hline 4 & 83 \\ \hline \end{array} \][/tex]
a) To find the probability of randomly selecting a household that has less than two cars:
1. Identify the number of households with less than two cars. This includes households with 0 cars and 1 car.
2. Sum these households: [tex]\( 125 + 428 = 553 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(x < 2) = \frac{125 + 428}{1000} = \frac{553}{1000} = 0.553 \][/tex]
Therefore, [tex]\( P(x < 2) = 0.553 \)[/tex].
b) To find the probability of randomly selecting a household that has at least one car:
1. Identify the number of households with at least one car. This includes households with 1, 2, 3, or 4 cars.
2. Sum these households: [tex]\( 428 + 256 + 108 + 83 = 875 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(x \geq 1) = \frac{428 + 256 + 108 + 83}{1000} = \frac{875}{1000} = 0.875 \][/tex]
Therefore, [tex]\( P(x \geq 1) = 0.875 \)[/tex].
c) To find the probability of randomly selecting a household that has between one and three cars, inclusive:
1. Identify the number of households with between one and three cars. This includes households with 1, 2, or 3 cars.
2. Sum these households: [tex]\( 428 + 256 + 108 = 792 \)[/tex]
3. Calculate the probability by dividing by the total number of households (1000):
[tex]\[ P(1 \leq x \leq 3) = \frac{428 + 256 + 108}{1000} = \frac{792}{1000} = 0.792 \][/tex]
Therefore, [tex]\( P(1 \leq x \leq 3) = 0.792 \)[/tex].
So the results are:
a) [tex]\( P(x < 2) = 0.553 \)[/tex]
b) [tex]\( P(x \geq 1) = 0.875 \)[/tex]
c) [tex]\( P(1 \leq x \leq 3) = 0.792 \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.