Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the mean and standard deviation of the random variable [tex]\( x \)[/tex], we will follow these steps:
### Mean
The mean (or expected value) of a random variable [tex]\( x \)[/tex] is calculated using the formula:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
where [tex]\( x_i \)[/tex] are the values of the random variable and [tex]\( P(x_i) \)[/tex] are the corresponding probabilities.
Given the values:
- [tex]\( x \)[/tex] = [tex]\( \{0, 1, 2, 3, 4\} \)[/tex]
- [tex]\( P(x) \)[/tex] = [tex]\( \left\{\frac{3}{17}, \frac{5}{17}, \frac{6}{17}, \frac{2}{17}, \frac{1}{17} \right\} \)[/tex]
We calculate the mean as follows:
[tex]\[ \mu = (0 \cdot \frac{3}{17}) + (1 \cdot \frac{5}{17}) + (2 \cdot \frac{6}{17}) + (3 \cdot \frac{2}{17}) + (4 \cdot \frac{1}{17}) \][/tex]
[tex]\[ \mu = 0 + \left(\frac{5}{17}\right) + \left(\frac{12}{17}\right) + \left(\frac{6}{17}\right) + \left(\frac{4}{17}\right) \][/tex]
[tex]\[ \mu = \frac{5 + 12 + 6 + 4}{17} = \frac{27}{17} \approx 1.59 \][/tex]
So, the mean is:
[tex]\[ \text{mean} = 1.59 \][/tex]
### Standard Deviation
The standard deviation is the square root of the variance. The variance ([tex]\( \sigma^2 \)[/tex]) is calculated using the formula:
[tex]\[ \sigma^2 = \sum (P(x_i) \cdot (x_i - \mu)^2) \][/tex]
To find the variance, we need the values of [tex]\( (x_i - \mu)^2 \)[/tex]:
[tex]\[ (0 - 1.59)^2 = 2.5281 \][/tex]
[tex]\[ (1 - 1.59)^2 = 0.3481 \][/tex]
[tex]\[ (2 - 1.59)^2 = 0.1681 \][/tex]
[tex]\[ (3 - 1.59)^2 = 2.0161 \][/tex]
[tex]\[ (4 - 1.59)^2 = 5.8561 \][/tex]
Now we calculate the variance:
[tex]\[ \sigma^2 = ( \frac{3}{17} \cdot 2.5281 ) + ( \frac{5}{17} \cdot 0.3481 ) + ( \frac{6}{17} \cdot 0.1681 ) + ( \frac{2}{17} \cdot 2.0161 ) + ( \frac{1}{17} \cdot 5.8561 ) \][/tex]
[tex]\[ \sigma^2 = \left( \frac{7.5843}{17} \right) + \left( \frac{1.7405}{17} \right) + \left( \frac{1.0086}{17} \right) + \left( \frac{4.0322}{17} \right) + \left( \frac{5.8561}{17} \right) \][/tex]
[tex]\[ \sigma^2 = \frac{7.5843 + 1.7405 + 1.0086 + 4.0322 + 5.8561}{17} = \frac{20.2217}{17} \approx 1.189 \][/tex]
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{1.189} \approx 1.09 \][/tex]
So, the standard deviation is:
[tex]\[ \text{standard deviation} = 1.09 \][/tex]
### Answers
a) Mean [tex]\( = 1.59 \)[/tex]
b) Standard Deviation [tex]\( = 1.09 \)[/tex]
### Mean
The mean (or expected value) of a random variable [tex]\( x \)[/tex] is calculated using the formula:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
where [tex]\( x_i \)[/tex] are the values of the random variable and [tex]\( P(x_i) \)[/tex] are the corresponding probabilities.
Given the values:
- [tex]\( x \)[/tex] = [tex]\( \{0, 1, 2, 3, 4\} \)[/tex]
- [tex]\( P(x) \)[/tex] = [tex]\( \left\{\frac{3}{17}, \frac{5}{17}, \frac{6}{17}, \frac{2}{17}, \frac{1}{17} \right\} \)[/tex]
We calculate the mean as follows:
[tex]\[ \mu = (0 \cdot \frac{3}{17}) + (1 \cdot \frac{5}{17}) + (2 \cdot \frac{6}{17}) + (3 \cdot \frac{2}{17}) + (4 \cdot \frac{1}{17}) \][/tex]
[tex]\[ \mu = 0 + \left(\frac{5}{17}\right) + \left(\frac{12}{17}\right) + \left(\frac{6}{17}\right) + \left(\frac{4}{17}\right) \][/tex]
[tex]\[ \mu = \frac{5 + 12 + 6 + 4}{17} = \frac{27}{17} \approx 1.59 \][/tex]
So, the mean is:
[tex]\[ \text{mean} = 1.59 \][/tex]
### Standard Deviation
The standard deviation is the square root of the variance. The variance ([tex]\( \sigma^2 \)[/tex]) is calculated using the formula:
[tex]\[ \sigma^2 = \sum (P(x_i) \cdot (x_i - \mu)^2) \][/tex]
To find the variance, we need the values of [tex]\( (x_i - \mu)^2 \)[/tex]:
[tex]\[ (0 - 1.59)^2 = 2.5281 \][/tex]
[tex]\[ (1 - 1.59)^2 = 0.3481 \][/tex]
[tex]\[ (2 - 1.59)^2 = 0.1681 \][/tex]
[tex]\[ (3 - 1.59)^2 = 2.0161 \][/tex]
[tex]\[ (4 - 1.59)^2 = 5.8561 \][/tex]
Now we calculate the variance:
[tex]\[ \sigma^2 = ( \frac{3}{17} \cdot 2.5281 ) + ( \frac{5}{17} \cdot 0.3481 ) + ( \frac{6}{17} \cdot 0.1681 ) + ( \frac{2}{17} \cdot 2.0161 ) + ( \frac{1}{17} \cdot 5.8561 ) \][/tex]
[tex]\[ \sigma^2 = \left( \frac{7.5843}{17} \right) + \left( \frac{1.7405}{17} \right) + \left( \frac{1.0086}{17} \right) + \left( \frac{4.0322}{17} \right) + \left( \frac{5.8561}{17} \right) \][/tex]
[tex]\[ \sigma^2 = \frac{7.5843 + 1.7405 + 1.0086 + 4.0322 + 5.8561}{17} = \frac{20.2217}{17} \approx 1.189 \][/tex]
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{1.189} \approx 1.09 \][/tex]
So, the standard deviation is:
[tex]\[ \text{standard deviation} = 1.09 \][/tex]
### Answers
a) Mean [tex]\( = 1.59 \)[/tex]
b) Standard Deviation [tex]\( = 1.09 \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.