Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's fill in the blanks and identify the respective properties used in each step.
Given:
1) [tex]\( 112 \times a = 53 \times 112 \)[/tex]
2) [tex]\((72 \times b) \times 81 = c \times (72 \times 63)\)[/tex]
3) [tex]\((44 \times 25) \times 90 = m \times (25 \times n)\)[/tex]
4) [tex]\((83 \times y) \times 69 = z \times (57 \times 69)\)[/tex]
5) [tex]\(37 \times (56 \times p) = (q \times 71) \times 37\)[/tex]
From these equations, we identified:
1) [tex]\( a = 53 \)[/tex]
2) [tex]\( b = 63, c = 81 \)[/tex]
3) [tex]\( m = 44, n = 90 \)[/tex]
4) [tex]\( y = 57, z = 83 \)[/tex]
5) [tex]\( p = 71, q = 56 \)[/tex]
Now let's fill in the table by providing the variable values and properties used:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Sentence & Variable Value & Property \\ \hline 1. \( 112 \times a = 53 \times 112 \) & \( a = 53 \) & \begin{tabular}{l} Commutative property \\ of multiplication \end{tabular} \\ \hline 2. \((72 \times b) \times 81 = c \times (72 \times 63)\) & \( b = 63, c = 81 \) & \begin{tabular}{l} Associative property \\ of multiplication \end{tabular} \\ \hline 3. \((44 \times 25) \times 90 = m \times (25 \times n)\) & \( m = 44, n = 90 \) & \begin{tabular}{l} Associative property \\ of multiplication \end{tabular} \\ \hline 4. \((83 \times y) \times 69 = z \times (57 \times 69)\) & \( y = 57, z = 83 \) & \begin{tabular}{l} Associative property \\ of multiplication \end{tabular} \\ \hline 5. \( 37 \times (56 \times p) = (q \times 71) \times 37 \) & \( p = 71, q = 56 \) & \begin{tabular}{l} Associative property \\ of multiplication \end{tabular} \\ \hline \end{tabular} \][/tex]
Explanation:
1. In the first equation [tex]\(112 \times a = 53 \times 112\)[/tex], the values of 112 and 53 are interchanged, which is allowed by the commutative property of multiplication.
2. For equations 2, 3, and 4, the grouping of numbers is changed, which is allowed by the associative property of multiplication.
3. Similarly, in equation 5, the associative property is used to change the grouping of the numbers.
Using these properties, we identified the correct values for the variables in each equation, completing the table accurately.
Given:
1) [tex]\( 112 \times a = 53 \times 112 \)[/tex]
2) [tex]\((72 \times b) \times 81 = c \times (72 \times 63)\)[/tex]
3) [tex]\((44 \times 25) \times 90 = m \times (25 \times n)\)[/tex]
4) [tex]\((83 \times y) \times 69 = z \times (57 \times 69)\)[/tex]
5) [tex]\(37 \times (56 \times p) = (q \times 71) \times 37\)[/tex]
From these equations, we identified:
1) [tex]\( a = 53 \)[/tex]
2) [tex]\( b = 63, c = 81 \)[/tex]
3) [tex]\( m = 44, n = 90 \)[/tex]
4) [tex]\( y = 57, z = 83 \)[/tex]
5) [tex]\( p = 71, q = 56 \)[/tex]
Now let's fill in the table by providing the variable values and properties used:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Sentence & Variable Value & Property \\ \hline 1. \( 112 \times a = 53 \times 112 \) & \( a = 53 \) & \begin{tabular}{l} Commutative property \\ of multiplication \end{tabular} \\ \hline 2. \((72 \times b) \times 81 = c \times (72 \times 63)\) & \( b = 63, c = 81 \) & \begin{tabular}{l} Associative property \\ of multiplication \end{tabular} \\ \hline 3. \((44 \times 25) \times 90 = m \times (25 \times n)\) & \( m = 44, n = 90 \) & \begin{tabular}{l} Associative property \\ of multiplication \end{tabular} \\ \hline 4. \((83 \times y) \times 69 = z \times (57 \times 69)\) & \( y = 57, z = 83 \) & \begin{tabular}{l} Associative property \\ of multiplication \end{tabular} \\ \hline 5. \( 37 \times (56 \times p) = (q \times 71) \times 37 \) & \( p = 71, q = 56 \) & \begin{tabular}{l} Associative property \\ of multiplication \end{tabular} \\ \hline \end{tabular} \][/tex]
Explanation:
1. In the first equation [tex]\(112 \times a = 53 \times 112\)[/tex], the values of 112 and 53 are interchanged, which is allowed by the commutative property of multiplication.
2. For equations 2, 3, and 4, the grouping of numbers is changed, which is allowed by the associative property of multiplication.
3. Similarly, in equation 5, the associative property is used to change the grouping of the numbers.
Using these properties, we identified the correct values for the variables in each equation, completing the table accurately.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.